终身会员
搜索
    上传资料 赚现金

    2022届贵州省黔西县市级名校中考数学对点突破模拟试卷含解析

    立即下载
    加入资料篮
    2022届贵州省黔西县市级名校中考数学对点突破模拟试卷含解析第1页
    2022届贵州省黔西县市级名校中考数学对点突破模拟试卷含解析第2页
    2022届贵州省黔西县市级名校中考数学对点突破模拟试卷含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届贵州省黔西县市级名校中考数学对点突破模拟试卷含解析

    展开

    这是一份2022届贵州省黔西县市级名校中考数学对点突破模拟试卷含解析,共24页。试卷主要包含了下列各数中是有理数的是,下面计算中,正确的是,下面几何的主视图是,若a+b=3,,则ab等于等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.|﹣3|=(  )
    A. B.﹣ C.3 D.﹣3
    2.如图,△ADE绕正方形ABCD的顶点A顺时针旋转90°,得△ABF,连接EF交AB于H,有如下五个结论①AE⊥AF;②EF:AF=:1;③AF2=FH•FE;④∠AFE=∠DAE+∠CFE ⑤ FB:FC=HB:EC.则正确的结论有( )

    A.2个 B.3个 C.4个 D.5个
    3.如果k<0,b>0,那么一次函数y=kx+b的图象经过( )
    A.第一、二、三象限 B.第二、三、四象限
    C.第一、三、四象限 D.第一、二、四象限
    4.如图,正方形ABCD中,对角线AC、BD交于点O,∠BAC的平分线交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,连接GE、GF,以下结论:①△OAE≌△OBG;②四边形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正确的有(  )个.

    A.2 B.3 C.4 D.5
    5.下列各数中是有理数的是(  )
    A.π B.0 C. D.
    6.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于( )

    A.1∶3 B.2∶3 C.∶2 D.∶3
    7.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是(  )
    学生数(人)
    5
    8
    14
    19
    4
    时间(小时)
    6
    7
    8
    9
    10
    A.14,9 B.9,9 C.9,8 D.8,9
    8.下面计算中,正确的是(  )
    A.(a+b)2=a2+b2 B.3a+4a=7a2
    C.(ab)3=ab3 D.a2•a5=a7
    9.下面几何的主视图是( )

    A. B. C. D.
    10.若a+b=3,,则ab等于( )
    A.2 B.1 C.﹣2 D.﹣1
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是 .
    12.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是______.

    13.如图,正方形ABCD内有两点E、F满足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,则正方形ABCD的边长为_____.

    14.函数y= 中,自变量x的取值范围是 _____.
    15.如果关于x的方程的两个实数根分别为x1,x2,那么的值为________________.
    16.圆锥底面圆的半径为3,高为4,它的侧面积等于_____(结果保留π).
    三、解答题(共8题,共72分)
    17.(8分)(2017四川省内江市)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:
    (1)这项被调查的总人数是多少人?
    (2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;
    (3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.

    18.(8分)如图,点A(m,m+1),B(m+1,2m-3)都在反比例函数的图象上.

    (1)求m,k的值;
    (2)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.
    19.(8分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.

    (1)将上面的条形统计图补充完整;
    (2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?
    (3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?
    20.(8分)解不等式:3x﹣1>2(x﹣1),并把它的解集在数轴上表示出来.

    21.(8分)小明和小刚玩“石头、剪刀、布”的游戏,每一局游戏双方各自随机做出“石头”、“剪刀”、“布”三种手势的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,相同的手势是和局.
    (1)用树形图或列表法计算在一局游戏中两人获胜的概率各是多少?
    (2)如果两人约定:只要谁率先胜两局,就成了游戏的赢家.用树形图或列表法求只进行两局游戏便能确定赢家的概率.
    22.(10分)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.
    (1)求证:AE•FD=AF•EC;
    (2)求证:FC=FB;
    (3)若FB=FE=2,求⊙O的半径r的长.

    23.(12分)综合与探究:
    如图1,抛物线y=﹣x2+x+与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(0,﹣).
    (1)求A、B两点的坐标及直线l的表达式;
    (2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t(t>0)秒.探究下列问题:
    ①请直接写出A′的坐标(用含字母t的式子表示);
    ②当点A′落在抛物线上时,求直线l的运动时间t的值,判断此时四边形A′BEF的形状,并说明理由;
    (3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A′,B,E为顶点的四边形为矩形?若存在,请直接写出点P的坐标; 若不存在,请说明理由.

    24.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=1.
    (1)填空:抛物线的顶点坐标为 (用含m的代数式表示);
    (2)求△ABC的面积(用含a的代数式表示);
    (3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据绝对值的定义解答即可.
    【详解】
    |-3|=3
    故选:C
    【点睛】
    本题考查的是绝对值,理解绝对值的定义是关键.
    2、C
    【解析】
    由旋转性质得到△AFB≌△AED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否.
    【详解】
    解:由题意知,△AFB≌△AED
    ∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.
    ∴AE⊥AF,故此选项①正确;
    ∴∠AFE=∠AEF=∠DAE+∠CFE,故④正确;
    ∵△AEF是等腰直角三角形,有EF:AF=:1,故此选项②正确;
    ∵△AEF与△AHF不相似,
    ∴AF2=FH·FE不正确.故此选项③错误,
    ∵HB//EC,
    ∴△FBH∽△FCE,
    ∴FB:FC=HB:EC,故此选项⑤正确.
    故选:C
    【点睛】
    本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质是解决问题的关键.
    3、D
    【解析】
    根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.
    【详解】
    ∵k<0,
    ∴一次函数y=kx+b的图象经过第二、四象限.
    又∵b>0时,
    ∴一次函数y=kx+b的图象与y轴交与正半轴.
    综上所述,该一次函数图象经过第一、二、四象限.
    故选D.
    【点睛】
    本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
    4、C
    【解析】
    根据AF是∠BAC的平分线,BH⊥AF,可证AF为BG的垂直平分线,然后再根据正方形内角及角平分线进行角度转换证明EG=EB,FG=FB,即可判定②选项;设OA=OB=OC=a,菱形BEGF的边长为b,由四边形BEGF是菱形转换得到CF=GF=BF,由四边形ABCD是正方形和角度转换证明△OAE≌△OBG,即可判定①;则△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的关系式,再由△PGC∽△BGA,得到=1+,从而判断得出④;得出∠EAB=∠GBC从而证明△EAB≌△GBC,即可判定③;证明△FAB≌△PBC得到BF=CP,即可求出,从而判断⑤.
    【详解】
    解:∵AF是∠BAC的平分线,
    ∴∠GAH=∠BAH,
    ∵BH⊥AF,
    ∴∠AHG=∠AHB=90°,
    在△AHG和△AHB中

    ∴△AHG≌△AHB(ASA),
    ∴GH=BH,
    ∴AF是线段BG的垂直平分线,
    ∴EG=EB,FG=FB,
    ∵四边形ABCD是正方形,
    ∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,
    ∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,
    ∴∠BEF=∠BFE,
    ∴EB=FB,
    ∴EG=EB=FB=FG,
    ∴四边形BEGF是菱形;②正确;
    设OA=OB=OC=a,菱形BEGF的边长为b,
    ∵四边形BEGF是菱形,
    ∴GF∥OB,
    ∴∠CGF=∠COB=90°,
    ∴∠GFC=∠GCF=45°,
    ∴CG=GF=b,∠CGF=90°,
    ∴CF=GF=BF,
    ∵四边形ABCD是正方形,
    ∴OA=OB,∠AOE=∠BOG=90°,
    ∵BH⊥AF,
    ∴∠GAH+∠AGH=90°=∠OBG+∠AGH,
    ∴∠OAE=∠OBG,
    在△OAE和△OBG中

    ∴△OAE≌△OBG(ASA),①正确;
    ∴OG=OE=a﹣b,
    ∴△GOE是等腰直角三角形,
    ∴GE=OG,
    ∴b=(a﹣b),
    整理得a=b,
    ∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,
    ∵四边形ABCD是正方形,
    ∴PC∥AB,
    ∴===1+,
    ∵△OAE≌△OBG,
    ∴AE=BG,
    ∴=1+,
    ∴==1﹣,④正确;
    ∵∠OAE=∠OBG,∠CAB=∠DBC=45°,
    ∴∠EAB=∠GBC,
    在△EAB和△GBC中

    ∴△EAB≌△GBC(ASA),
    ∴BE=CG,③正确;
    在△FAB和△PBC中

    ∴△FAB≌△PBC(ASA),
    ∴BF=CP,
    ∴====,⑤错误;
    综上所述,正确的有4个,
    故选:C.
    【点睛】
    本题综合考查了全等三角形的判定与性质,相似三角形,菱形的判定与性质等四边形的综合题.该题难度较大,需要学生对有关于四边形的性质的知识有一系统的掌握.
    5、B
    【解析】
    【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.
    【详解】A、π是无限不循环小数,属于无理数,故本选项错误;
    B、0是有理数,故本选项正确;
    C、是无理数,故本选项错误;
    D、是无理数,故本选项错误,
    故选B.
    【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.
    6、A
    【解析】
    ∵DE⊥AC,EF⊥AB,FD⊥BC,
    ∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,
    ∴∠C=∠FDE,
    同理可得:∠B=∠DFE,∠A=DEF,
    ∴△DEF∽△CAB,
    ∴△DEF与△ABC的面积之比= ,
    又∵△ABC为正三角形,
    ∴∠B=∠C=∠A=60°
    ∴△EFD是等边三角形,
    ∴EF=DE=DF,
    又∵DE⊥AC,EF⊥AB,FD⊥BC,
    ∴△AEF≌△CDE≌△BFD,
    ∴BF=AE=CD,AF=BD=EC,
    在Rt△DEC中,
    DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,
    又∵DC+BD=BC=AC=DC,
    ∴,
    ∴△DEF与△ABC的面积之比等于:
    故选A.
    点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边之比,进而得到面积比.
    7、C
    【解析】
    解:观察、分析表格中的数据可得:
    ∵课外阅读时间为1小时的人数最多为11人,
    ∴众数为1.
    ∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,
    ∴中位数为2.
    故选C.
    【点睛】
    本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数.
    8、D
    【解析】
    直接利用完全平方公式以及合并同类项法则、积的乘方运算法则分别化简得出答案.
    【详解】
    A. (a+b)2=a2+b2+2ab,故此选项错误;
    B. 3a+4a=7a,故此选项错误;
    C. (ab)3=a3b3,故此选项错误;
    D. a2×a5=a7,正确。
    故选:D.
    【点睛】
    本题考查了幂的乘方与积的乘方,合并同类项,同底数幂的乘法,完全平方公式,解题的关键是掌握它们的概念进行求解.
    9、B
    【解析】
    主视图是从物体正面看所得到的图形.
    【详解】
    解:从几何体正面看
    故选B.
    【点睛】
    本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
    10、B
    【解析】
    ∵a+b=3,
    ∴(a+b)2=9
    ∴a2+2ab+b2=9
    ∵a2+b2=7
    ∴7+2ab=9,7+2ab=9
    ∴ab=1.
    故选B.
    考点:完全平方公式;整体代入.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、4n﹣1.
    【解析】
    由图可知:第一个图案有阴影小三角形1个,第二图案有阴影小三角形1+4=6个,第三个图案有阴影小三角形1+8=11个,···那么第n个就有阴影小三角形1+4(n﹣1)=4n﹣1个.
    12、
    【解析】
    解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,
    过点M作MF⊥DC于点F,
    ∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,
    ∴2MD=AD=CD=2,∠FDM=60°,
    ∴∠FMD=30°,
    ∴FD=MD=1,
    ∴FM=DM×cos30°=,
    ∴,
    ∴A′C=MC﹣MA′=.
    故答案为.

    【点评】
    此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.
    13、
    【解析】
    分析:连接AC,交EF于点M,可证明△AEM∽△CMF,根据条件可求得AE、EM、FM、CF,再结合勾股定理可求得AB.
    详解:连接AC,交EF于点M,

    ∵AE丄EF,EF丄FC,
    ∴∠E=∠F=90°,
    ∵∠AME=∠CMF,
    ∴△AEM∽△CFM,
    ∴,
    ∵AE=1,EF=FC=3,
    ∴,
    ∴EM=,FM=,
    在Rt△AEM中,AM2=AE2+EM2=1+=,解得AM=,
    在Rt△FCM中,CM2=CF2+FM2=9+=,解得CM=,
    ∴AC=AM+CM=5,
    在Rt△ABC中,AB=BC,AB2+BC2=AC2=25,
    ∴AB=,即正方形的边长为.
    故答案为:.
    点睛:本题主要考查相似三角形的判定和性质及正方形的性质,构造三角形相似利用相似三角形的对应边成比例求得AC的长是解题的关键,注意勾股定理的应用.
    14、x≠﹣.
    【解析】
    该函数是分式,分式有意义的条件是分母不等于1,故分母x﹣1≠1,解得x的范围.
    【详解】
    解:根据分式有意义的条件得:2x+3≠1
    解得:
    故答案为
    【点睛】
    本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足分母不等于1.
    15、
    【解析】
    由方程有两个实数根,得到根的判别式的值大于等于0,列出关于k的不等式,利用非负数的性质得到k的值,确定出方程,求出方程的解,代入所求式子中计算即可求出值.
    【详解】
    ∵方程x2+kx+=0有两个实数根,
    ∴b2-4ac=k2-4(k2-3k+)=-2k2+12k-18=-2(k-3)2≥0,
    ∴k=3,
    代入方程得:x2+3x+=(x+)2=0,
    解得:x1=x2=-,
    则=-.
    故答案为-.
    【点睛】
    此题考查了根的判别式,非负数的性质,以及配方法的应用,求出k的值是本题的突破点.
    16、15π
    【解析】
    根据圆的面积公式、扇形的面积公式计算即可.
    【详解】
    圆锥的母线长==5,,
    圆锥底面圆的面积=9π
    圆锥底面圆的周长=2×π×3=6π,即扇形的弧长为6π,
    ∴圆锥的侧面展开图的面积=×6π×5=15π,
    【点睛】
    本题考查的是扇形的面积,熟练掌握扇形和圆的面积公式是解题的关键.

    三、解答题(共8题,共72分)
    17、(1)50;(2)108°;(3).
    【解析】
    分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案.
    本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.
    (2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=.

    点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
    18、(1)m=3,k=12;(2)或
    【解析】
    【分析】(1)把A(m,m+1),B(m+3,m-1)代入反比例函数y=,得k=m(m+1)=(m+3)(m-1),再求解;(2)用待定系数法求一次函数解析式;(3)过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.根据平行四边形判定和勾股定理可求出M,N的坐标.
    【详解】
    解:(1)∵点A(m,m+1),B(m+3,m-1)都在反比例函数y=的图像上,
    ∴k=xy,
    ∴k=m(m+1)=(m+3)(m-1),
    ∴m2+m=m2+2m-3,解得m=3,
    ∴k=3×(3+1)=12.
    (2)∵m=3,
    ∴A(3,4),B(6,2).
    设直线AB的函数表达式为y=k′x+b(k′≠0),

    解得
    ∴直线AB的函数表达式为y=-x+6.
    (3)M(3,0),N(0,2)或M(-3,0),N(0,-2).
    解答过程如下:过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.
    ∵由(1)知:A(3,4),B(6,2),
    ∴AP=PM=2,BP=PN=3,
    ∴四边形ANMB是平行四边形,此时M(3,0),N(0,2).当M′(-3,0),N′(0,-2)时,根据勾股定理能求出AM′=BN′,AB=M′N′,即四边形AM′N′B是平行四边形.故M(3,0),N(0,2)或M(-3,0),N(0,-2).

    【点睛】本题考核知识点:反比例函数综合. 解题关键点:熟记反比例函数的性质.
    19、(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.
    【解析】
    (1)根据诚信的人数和所占的百分比求出抽取的总人数,用总人数乘以友善所占的百分比,即可补全统计图;
    (2)用360°乘以爱国所占的百分比,即可求出圆心角的度数;
    (3)用该校七年级的总人数乘以“友善”所占的百分比,即可得出答案.
    【详解】
    解:(1)本次调查共抽取的学生有(名)
    选择“友善”的人数有(名)
    ∴条形统计图如图所示:

    (2)∵选择“爱国”主题所对应的百分比为,
    ∴选择“爱国”主题所对应的圆心角是;
    (3)该校七年级共有1200名学生,估计选择以“友善”为主题的七年级学生有名.
    故答案为:(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.
    【点睛】
    本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    20、
    【解析】
    试题分析:按照解一元一次不等式的步骤解不等式即可.
    试题解析:,
    ,
    .
    解集在数轴上表示如下

    点睛:解一元一次不等式一般步骤:去分母,去括号,移项,合并同类项,把系数化为1.
    21、(1),(2)
    【解析】
    解:(1)画树状图得:

    ∵总共有9种等可能情况,每人获胜的情形都是3种,
    ∴两人获胜的概率都是.
    (2)由(1)可知,一局游戏每人胜、负、和的机会均等,都为.任选其中一人的情形可画树状图得:

    ∵总共有9种等可能情况,当出现(胜,胜)或(负,负)这两种情形时,赢家产生,
    ∴两局游戏能确定赢家的概率为:.
    (1)根据题意画出树状图或列表,由图表求得所有等可能的结果与在一局游戏中两人获胜的情况,利用概率公式即可求得答案.
    (2)因为由(1)可知,一局游戏每人胜、负、和的机会均等,都为.可画树状图,由树状图求得所有等可能的结果与进行两局游戏便能确定赢家的情况,然后利用概率公式求解即可求得答案.
    22、(1)详见解析;(2)详见解析;(3)2.
    【解析】
    (1)由BD是⊙O的切线得出∠DBA=90°,推出CH∥BD,证△AEC∽△AFD,得出比例式即可.
    (2)证△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根据直角三角形斜边上中线性质得出CF=DF=BF即可.
    (3)求出EF=FC,求出∠G=∠FAG,推出AF=FG,求出AB=BG,连接OC,BC,求出∠FCB=∠CAB推出CG是⊙O切线,由切割线定理(或△AGC∽△CGB)得出(2+FG)2=BG×AG=2BG2,在Rt△BFG中,由勾股定理得出BG2=FG2﹣BF2,推出FG2﹣4FG﹣12=0,求出FG即可,从而由勾股定理求得AB=BG
    的长,从而得到⊙O的半径r.
    23、(1)A(﹣1,0),B(3,0),y=﹣x﹣;
    (2)①A′(t﹣1, t);②A′BEF为菱形,见解析;
    (3)存在,P点坐标为(,)或(,﹣).
    【解析】
    (1)通过解方程﹣x2+x+=0得A(−1,0),B(3,0),然后利用待定系数法确定直线l的解析式;
    (2)①作A′H⊥x轴于H,如图2,利用OA=1,OD=得到∠OAD=60°,再利用平移和对称的性质得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根据含30度的直角三角形三边的关系表示出A′H,EH即可得到A′的坐标;
    ②把A′(t−1,t)代入y=−x2+x+得−(t−1)2+(t−1)+=t,解方程得到t=2,此时A′点的坐标为(2,),E(1,0),然后通过计算得到AF=BE=2,A′F∥BE,从而判断四边形A′BEF为平行四边形,然后加上EF=BE可判定四边形A′BEF为菱形;
    (3)讨论:当A′B⊥BE时,四边形A′BEP为矩形,利用点A′和点B的横坐标相同得到t−1=3,解方程求出t得到A′(3,),再利用矩形的性质可写出对应的P点坐标;当A′B⊥EA′,如图4,四边形A′BPE为矩形,作A′Q⊥x轴于Q,先确定此时A′点的坐标,然后利用点的平移确定对应P点坐标.
    【详解】
    (1)当y=0时,﹣x2+x+=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),
    设直线l的解析式为y=kx+b,
    把A(﹣1,0),D(0,﹣)代入得,解得,
    ∴直线l的解析式为y=﹣x﹣;
    (2)①作A′H⊥x轴于H,如图,

    ∵OA=1,OD=,
    ∴∠OAD=60°,
    ∵EF∥AD,
    ∴∠AEF=60°,
    ∵点A 关于直线l的对称点为A′,
    ∴EA=EA′=t,∠A′EF=∠AEF=60°,
    在Rt△A′EH中,EH=EA′=t,A′H=EH=t,
    ∴OH=OE+EH=t﹣1+t=t﹣1,
    ∴A′(t﹣1, t);
    ②把A′(t﹣1, t)代入y=﹣x2+x+得﹣(t﹣1)2+(t﹣1)+=t,
    解得t1=0(舍去),t2=2,
    ∴当点A′落在抛物线上时,直线l的运动时间t的值为2;
    此时四边形A′BEF为菱形,理由如下:
    当t=2时,A′点的坐标为(2,),E(1,0),
    ∵∠OEF=60°
    ∴OF=OE=,EF=2OE=2,
    ∴F(0,),
    ∴A′F∥x轴,
    ∵A′F=BE=2,A′F∥BE,
    ∴四边形A′BEF为平行四边形,
    而EF=BE=2,
    ∴四边形A′BEF为菱形;
    (3)存在,如图:

    当A′B⊥BE时,四边形A′BEP为矩形,则t﹣1=3,解得t=,则A′(3,),
    ∵OE=t﹣1=,
    ∴此时P点坐标为(,);
    当A′B⊥EA′,如图,四边形A′BPE为矩形,作A′Q⊥x轴于Q,

    ∵∠AEA′=120°,
    ∴∠A′EB=60°,
    ∴∠EBA′=30°
    ∴BQ=A′Q=•t=t,
    ∴t﹣1+t=3,解得t=,
    此时A′(1,),E(,0),
    点A′向左平移个单位,向下平移个单位得到点E,则点B(3,0)向左平移个单位,向下平移个单位得到点P,则P(,﹣),
    综上所述,满足条件的P点坐标为(,)或(,﹣).
    【点睛】
    本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、菱形的判定和矩形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质.
    24、(1)(m,2m﹣2);(2)S△ABC =﹣;(3)m的值为或10+2.
    【解析】
    分析:(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;
    (2)过点C作直线AB的垂线,交线段AB的延长线于点D,由AB∥x轴且AB=1,可得出点B的坐标为(m+2,1a+2m−2),设BD=t,则点C的坐标为(m+2+t,1a+2m−2−t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出S△ABC的值;
    (3)由(2)的结论结合S△ABC=2可求出a值,分三种情况考虑:①当m>2m−2,即m<2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;②当2m−2≤m≤2m−2,即2≤m≤2时,x=m时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;③当m<2m−2,即m>2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值.综上即可得出结论.
    详解:(1)∵y=ax2﹣2amx+am2+2m﹣2=a(x﹣m)2+2m﹣2,
    ∴抛物线的顶点坐标为(m,2m﹣2),
    故答案为(m,2m﹣2);
    (2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示,

    ∵AB∥x轴,且AB=1,
    ∴点B的坐标为(m+2,1a+2m﹣2),
    ∵∠ABC=132°,
    ∴设BD=t,则CD=t,
    ∴点C的坐标为(m+2+t,1a+2m﹣2﹣t),
    ∵点C在抛物线y=a(x﹣m)2+2m﹣2上,
    ∴1a+2m﹣2﹣t=a(2+t)2+2m﹣2,
    整理,得:at2+(1a+1)t=0,
    解得:t1=0(舍去),t2=﹣,
    ∴S△ABC=AB•CD=﹣;
    (3)∵△ABC的面积为2,
    ∴﹣=2,
    解得:a=﹣,
    ∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣2.
    分三种情况考虑:
    ①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣2=2,
    整理,得:m2﹣11m+39=0,
    解得:m1=7﹣(舍去),m2=7+(舍去);
    ②当2m﹣2≤m≤2m﹣2,即2≤m≤2时,有2m﹣2=2,解得:m=;
    ③当m<2m﹣2,即m>2时,有﹣(2m﹣2﹣m)2+2m﹣2=2,
    整理,得:m2﹣20m+60=0,
    解得:m3=10﹣2(舍去),m1=10+2.
    综上所述:m的值为或10+2.
    点睛:本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分m<2、2≤m≤2及m>2三种情况考虑.

    相关试卷

    贵州省黔西县市级名校2021-2022学年中考数学最后一模试卷含解析:

    这是一份贵州省黔西县市级名校2021-2022学年中考数学最后一模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022届重庆市江北区市级名校中考数学对点突破模拟试卷含解析:

    这是一份2022届重庆市江北区市级名校中考数学对点突破模拟试卷含解析,共19页。试卷主要包含了下列说法正确的是,下列运算正确的是等内容,欢迎下载使用。

    2021-2022学年河南省郑州市市级名校中考数学对点突破模拟试卷含解析:

    这是一份2021-2022学年河南省郑州市市级名校中考数学对点突破模拟试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,定义运算等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map