|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届贵州省黔东南州凯里六中学中考数学模拟精编试卷含解析
    立即下载
    加入资料篮
    2022届贵州省黔东南州凯里六中学中考数学模拟精编试卷含解析01
    2022届贵州省黔东南州凯里六中学中考数学模拟精编试卷含解析02
    2022届贵州省黔东南州凯里六中学中考数学模拟精编试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届贵州省黔东南州凯里六中学中考数学模拟精编试卷含解析

    展开
    这是一份2022届贵州省黔东南州凯里六中学中考数学模拟精编试卷含解析,共22页。试卷主要包含了下列命题中,错误的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如果关于x的方程没有实数根,那么c在2、1、0、中取值是( )
    A.; B.; C.; D..
    2.如图,已知反比函数的图象过Rt△ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若△ABO的周长为,AD=2,则△ACO的面积为( )

    A. B.1 C.2 D.4
    3.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F, S△AEF=3,则S△FCD为(  )

    A.6 B.9 C.12 D.27
    4.下列说法中正确的是( )
    A.检测一批灯泡的使用寿命适宜用普查.
    B.抛掷一枚均匀的硬币,正面朝上的概率是,如果抛掷10次,就一定有5次正面朝上.
    C.“367人中有两人是同月同日生”为必然事件.
    D.“多边形内角和与外角和相等”是不可能事件.
    5.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是(  )
    A. B. C. D.
    6.下列命题中,错误的是(  )
    A.三角形的两边之和大于第三边
    B.三角形的外角和等于360°
    C.等边三角形既是轴对称图形,又是中心对称图形
    D.三角形的一条中线能将三角形分成面积相等的两部分
    7.下列图形中,线段MN的长度表示点M到直线l的距离的是( )
    A. B. C. D.
    8.在平面直角坐标系中,位于第二象限的点是(  )
    A.(﹣1,0) B.(﹣2,﹣3) C.(2,﹣1) D.(﹣3,1)
    9.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有(  )

    A.1个 B.2个 C.3个 D.4个
    10.如图,将绕直角顶点顺时针旋转,得到,连接,若,则的度数是( )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.

    12.在平面直角坐标系xOy中,若干个半径为1个单位长度,圆心角是的扇形按图中的方式摆放,动点K从原点O出发,沿着“半径OA弧AB弧BC半径CD半径DE”的曲线运动,若点K在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒个单位长度,设第n秒运动到点K,为自然数,则的坐标是____,的坐标是____

    13.一元二次方程x﹣1=x2﹣1的根是_____.
    14.函数y=的自变量x的取值范围是_____.
    15.计算(﹣a2b)3=__.
    16.已知一次函数的图象与直线y=x+3平行,并且经过点(﹣2,﹣4),则这个一次函数的解析式为_____.
    17.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于__________.

    三、解答题(共7小题,满分69分)
    18.(10分)在平面直角坐标系中,点 , ,将直线平移与双曲线在第一象限的图象交于、两点.

    (1)如图1,将绕逆时针旋转得与对应,与对应),在图1中画出旋转后的图形并直接写出、坐标;
    (2)若,
    ①如图2,当时,求的值;
    ②如图3,作轴于点,轴于点,直线与双曲线有唯一公共点时,的值为  .
    19.(5分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:
    员工
    管理人员
    普通工作人员
    人员结构
    总经理
    部门经理
    科研人员
    销售人员
    高级技工
    中级技工
    勤杂工
    员工数(名)
    1
    3
    2
    3

    24
    1
    每人月工资(元)
    21000
    8400
    2025
    2200
    1800
    1600
    950
    请你根据上述内容,解答下列问题:
    (1)该公司“高级技工”有   名;
    (2)所有员工月工资的平均数x为2500元,中位数为   元,众数为   元;
    (3)小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;
    (4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平.

    20.(8分)一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.

    将三角形、正方形、五边形都整齐的由左到右填在所示表格里:
    三角形数
    1
    3
    6
    10
    15
    21
    a

    正方形数
    1
    4
    9
    16
    25
    b
    49

    五边形数
    1
    5
    12
    22
    C
    51
    70

    (1)按照规律,表格中a=___,b=___,c=___.
    (2)观察表中规律,第n个“正方形数”是________;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是___________.
    21.(10分)现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.
    22.(10分)如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.
    (1)请直接写出⊙M的直径,并求证BD平分∠ABO;
    (2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.

    23.(12分)如图,已知AB是⊙O的弦,C是 的中点,AB=8,AC= ,求⊙O半径的长.

    24.(14分)已知二次函数.
    (1)该二次函数图象的对称轴是;
    (2)若该二次函数的图象开口向上,当时,函数图象的最高点为,最低点为,点的纵坐标为,求点和点的坐标;
    (3)对于该二次函数图象上的两点,,设,当时,均有,请结合图象,直接写出的取值范围.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    分析:由方程根的情况,根据根的判别式可求得c的取值范围,则可求得答案.
    详解:∵关于x的方程x1+1x+c=0没有实数根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故选A.
    点睛:本题主要考查了根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.
    2、A
    【解析】
    在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出AB与OA的长,过D作DE垂直于x轴,得到E为OA中点,求出OE的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可.
    【详解】
    在Rt△AOB中,AD=2,AD为斜边OB的中线,

    ∴OB=2AD=4,
    由周长为4+2
    ,得到AB+AO=2,
    设AB=x,则AO=2-x,
    根据勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,
    整理得:x2-2x+4=0,
    解得x1=+,x2=-,
    ∴AB=+,OA=-,
    过D作DE⊥x轴,交x轴于点E,可得E为AO中点,
    ∴OE=OA=(-)(假设OA=+,与OA=-,求出结果相同),
    在Rt△DEO中,利用勾股定理得:DE==(+)),
    ∴k=-DE•OE=-(+))×(-))=1.
    ∴S△AOC=DE•OE=,
    故选A.
    【点睛】
    本题属于反比例函数综合题,涉及的知识有:勾股定理,直角三角形斜边的中线性质,三角形面积求法,以及反比例函数k的几何意义,熟练掌握反比例的图象与性质是解本题关键.
    3、D
    【解析】
    先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.
    【详解】
    解:∵四边形ABCD是平行四边形,AE:EB=1:2,
    ∴AE:CD=1:3,
    ∵AB∥CD,
    ∴∠EAF=∠DCF,
    ∵∠DFC=∠AFE,
    ∴△AEF∽△CDF,
    ∵S△AEF=3,
    ∴==()2,
    解得S△FCD=1.
    故选D.
    【点睛】
    本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.
    4、C
    【解析】
    【分析】根据相关的定义(调查方式,概率,可能事件,必然事件)进行分析即可.
    【详解】
    A. 检测一批灯泡的使用寿命不适宜用普查,因为有破坏性;
    B. 抛掷一枚均匀的硬币,正面朝上的概率是,如果抛掷10次,就可能有5次正面朝上,因为这是随机事件;
    C. “367人中有两人是同月同日生”为必然事件.因为一年只有365天或366天,所以367人中至少有两个日子相同;
    D. “多边形内角和与外角和相等”是可能事件.如四边形内角和和外角和相等.
    故正确选项为:C
    【点睛】本题考核知识点:对(调查方式,概率,可能事件,必然事件)理解. 解题关键:理解相关概念,合理运用举反例法.
    5、B
    【解析】
    试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.
    考点:由实际问题抽象出分式方程
    6、C
    【解析】
    根据三角形的性质即可作出判断.
    【详解】
    解:A、正确,符合三角形三边关系;
    B、正确;三角形外角和定理;
    C、错误,等边三角形既是轴对称图形,不是中心对称图形;
    D、三角形的一条中线能将三角形分成面积相等的两部分,正确.
    故选:C.
    【点睛】
    本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.
    7、A
    【解析】
    解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;
    图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.
    8、D
    【解析】
    点在第二象限的条件是:横坐标是负数,纵坐标是正数,直接得出答案即可.
    【详解】
    根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有C(﹣3,1)符合,故选:D.
    【点睛】
    本题考查点的坐标的性质,解题的关键是掌握点的坐标的性质.
    9、D
    【解析】
    由抛物线的开口向下知a<0,
    与y轴的交点为在y轴的正半轴上,得c>0,
    对称轴为x= <1,∵a<0,∴2a+b<0,
    而抛物线与x轴有两个交点,∴ −4ac>0,
    当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2.
    ∵ >2,∴4ac−<8a,∴+8a>4ac,
    ∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a−b+c<0.
    由①,③得到2a+2c<2,由①,②得到2a−c<−4,4a−2c<−8,
    上面两个相加得到6a<−6,∴a<−1.故选D.
    点睛:本题考查了二次函数图象与系数的关系,二次函数 中,a的符号由抛物线的开口方向决定;c的符号由抛物线与y轴交点的位置决定;b的符号由对称轴位置与a的符号决定;抛物线与x轴的交点个数决定根的判别式的符号,注意二次函数图象上特殊点的特点.
    10、B
    【解析】
    根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,最后根据旋转的性质可得∠B=∠A′B′C.
    【详解】
    解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,
    ∴AC=A′C,
    ∴△ACA′是等腰直角三角形,
    ∴∠CAA′=45°,
    ∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,
    ∴∠B=∠A′B′C=65°.
    故选B.
    【点睛】
    本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    由图象得出解析式后联立方程组解答即可.
    【详解】
    由图象可得:y甲=4t(0≤t≤5);y乙=;
    由方程组,解得t=.
    故答案为.
    【点睛】
    此题考查一次函数的应用,关键是由图象得出解析式解答.
    12、
    【解析】
    设第n秒运动到Kn(n为自然数)点,根据点K的运动规律找出部分Kn点的坐标,根据坐标的变化找出变化规律“K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)”,依此规律即可得出结论.
    【详解】
    设第n秒运动到Kn(n为自然数)点,观察,发现规律:K1(),K2(1,0),K3(),K4(2,0),K5(),…,∴K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0).
    ∵2018=4×504+2,∴K2018为(1009,0).
    故答案为:(),(1009,0).
    【点睛】
    本题考查了规律型中的点的坐标,解题的关键是找出变化规律,本题属于中档题,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键.
    13、x=0或x=1.
    【解析】
    利用因式分解法求解可得.
    【详解】
    ∵(x﹣1)﹣(x+1)(x﹣1)=0,
    ∴(x﹣1)(1﹣x﹣1)=0,即﹣x(x﹣1)=0,
    则x=0或x=1,
    故答案为:x=0或x=1.
    【点睛】
    本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
    14、x≠﹣1
    【解析】
    根据分母不等于2列式计算即可得解.
    【详解】
    解:根据题意得x+1≠2,
    解得x≠﹣1.
    故答案为:x≠﹣1.
    【点睛】
    考查的知识点为:分式有意义,分母不为2.
    15、−a6b3
    【解析】
    根据积的乘方和幂的乘方法则计算即可.
    【详解】
    原式=(﹣a2b)3=−a6b3,故答案为−a6b3.
    【点睛】
    本题考查了积的乘方和幂的乘方,关键是掌握运算法则.
    16、y=x﹣1
    【解析】
    分析:根据互相平行的两直线解析式的k值相等设出一次函数的解析式,再把点(﹣2,﹣4)的坐标代入解析式求解即可.
    详解:∵一次函数的图象与直线y=x+1平行,∴设一次函数的解析式为y=x+b.
    ∵一次函数经过点(﹣2,﹣4),∴×(﹣2)+b=﹣4,解得:b=﹣1,所以这个一次函数的表达式是:y=x﹣1.
    故答案为y=x﹣1.
    点睛:本题考查了两直线平行的问题,熟记平行直线的解析式的k值相等设出一次函数解析式是解题的关键.
    17、3
    【解析】
    试题解析:平移CD到C′D′交AB于O′,如图所示,

    则∠BO′D′=∠BOD,
    ∴tan∠BOD=tan∠BO′D′,
    设每个小正方形的边长为a,
    则O′B=,O′D′=,BD′=3a,
    作BE⊥O′D′于点E,
    则BE=,
    ∴O′E=,
    ∴tanBO′E=,
    ∴tan∠BOD=3.
    考点:解直角三角形.

    三、解答题(共7小题,满分69分)
    18、(1)作图见解析,,;(2)①k=6;②.
    【解析】
    (1)根据题意,画出对应的图形,根据旋转的性质可得,,从而求出点E、F的坐标;
    (2)过点作轴于,过点作轴于,过点作于,根据相似三角形的判定证出,列出比例式,设,根据反比例函数解析式可得(Ⅰ);
    ①根据等角对等边可得,可列方程(Ⅱ),然后联立方程即可求出点D的坐标,从而求出k的值;
    ②用m、n表示出点M、N的坐标即可求出直线MN的解析式,利于点D和点C的坐标即可求出反比例函数的解析式,联立两个解析式,令△=0即可求出m的值,从而求出k的值.
    【详解】
    解:(1)点 , ,
    ,,
    如图1,

    由旋转知,,,,
    点在轴正半轴上,点在轴负半轴上,
    ,;
    (2)过点作轴于,过点作轴于,过点作于,

    ,,








    ,,,
    ,,

    设,

    ,,
    点,在双曲线上,

    (Ⅰ)
    ①,



    (Ⅱ),
    联立(Ⅰ)(Ⅱ)解得:,,

    ②如图3,

    ,,
    ,,


    直线的解析式为(Ⅲ),
    双曲线(Ⅳ),
    联立(Ⅲ)(Ⅳ)得:,
    即:,
    △,
    直线与双曲线有唯一公共点,
    △,
    △,
    (舍或,


    故答案为:.
    【点睛】
    此题考查的是反比例函数与一次函数的综合大题,掌握利用待定系数法求反比例函数解析式、一次函数解析式、旋转的性质、相似三角形的判定及性质是解决此题的关键.
    19、(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些.(4)能反映该公司员工的月工资实际水平.
    【解析】
    (1)用总人数50减去其它部门的人数;
    (2)根据中位数和众数的定义求解即可;
    (3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;
    (4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.
    【详解】
    (1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);
    (2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;
    在这些数中1600元出现的次数最多,因而众数是1600元;
    (3)这个经理的介绍不能反映该公司员工的月工资实际水平.
    用1700元或1600元来介绍更合理些.
    (4)(元).
    能反映该公司员工的月工资实际水平.
    20、1 2 3 n2 n2 +x-n
    【解析】
    分析:(1)、首先根据题意得出前6个“三角形数”分别是多少,从而得出a的值;前5个“正方形数”分别是多少,从而得出b的值;前4个“正方形数”分别是多少,从而得出c的值;(2)、根据前面得出的一般性得出答案.
    详解:(1)∵前6个“三角形数”分别是:1=、3=、6=、10=、15=、21=,
    ∴第n个“三角形数”是, ∴a=7×82=17×82=1.
    ∵前5个“正方形数”分别是: 1=12,4=22,9=32,16=42,25=52,
    ∴第n个“正方形数”是n2, ∴b=62=2.
    ∵前4个“正方形数”分别是:1=,5=,12=,22=,
    ∴第n个“五边形数”是n(3n−1)2n(3n−1)2, ∴c==3.
    (2)第n个“正方形数”是n2;1+1-1=1,3+4-5=2,6+9-12=3,10+16-22=4,…,
    ∴第n个“五边形数”是n2+x-n.
    点睛:此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
    21、(1)y=x﹣2,y=x2++1;(2)a<;(3)m<﹣2或m>1.
    【解析】
    (1)直接将点代入函数解析式,用待定系数法即可求解函数解析式;
    (2)点(2,1)代入一次函数解析式,得到n=−2m,利用m与n的关系能求出二次函数对称轴x=1,由一次函数经过一、三象限可得m>1,确定二次函数开口向上,此时当 y1>y2,只需让a到对称轴的距离比a+1到对称轴的距离大即可求a的范围.
    (3)将A(h,k)分别代入两个二次函数解析式,再结合对称抽得h=,将得到的三个关系联立即可得到,再由题中已知−1<h<1,利用h的范围求出m的范围.
    【详解】
    (1)将点(2,1),(3,1),代入一次函数y=mx+n中,

    解得,
    ∴一次函数的解析式是y=x﹣2,
    再将点(2,1),(3,1),代入二次函数y=mx2+nx+1,

    解得,
    ∴二次函数的解析式是.
    (2)∵一次函数y=mx+n经过点(2,1),
    ∴n=﹣2m,
    ∵二次函数y=mx2+nx+1的对称轴是x=,
    ∴对称轴为x=1,
    又∵一次函数y=mx+n图象经过第一、三象限,
    ∴m>1,
    ∵y1>y2,
    ∴1﹣a>1+a﹣1,
    ∴a<.
    (3)∵y=mx2+nx+1的顶点坐标为A(h,k),
    ∴k=mh2+nh+1,且h=,
    又∵二次函数y=x2+x+1也经过A点,
    ∴k=h2+h+1,
    ∴mh2+nh+1=h2+h+1,
    ∴,
    又∵﹣1<h<1,
    ∴m<﹣2或m>1.
    【点睛】
    本题考点:点与函数的关系;二次函数的对称轴与函数值关系;待定系数法求函数解析式;不等式的解法;数形结合思想是解决二次函数问题的有效方法.
    22、(1)详见解析;(2)(,1).
    【解析】
    (1)根据勾股定理可得AB的长,即⊙M的直径,根据同弧所对的圆周角可得BD平分∠ABO;
    (2)作辅助构建切线AE,根据特殊的三角函数值可得∠OAB=30°,分别计算EF和AF的长,可得点E的坐标.
    【详解】
    (1)∵点A(,0)与点B(0,﹣1),
    ∴OA=,OB=1,
    ∴AB==2,
    ∵AB是⊙M的直径,
    ∴⊙M的直径为2,
    ∵∠COD=∠CBO,∠COD=∠CBA,
    ∴∠CBO=∠CBA,
    即BD平分∠ABO;
    (2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,
    ∵在Rt△ACB中,tan∠OAB=,
    ∴∠OAB=30°,
    ∵∠ABO=90°,
    ∴∠OBA=60°,
    ∴∠ABC=∠OBC==30°,
    ∴OC=OB•tan30°=1×,
    ∴AC=OA﹣OC=,
    ∴∠ACE=∠ABC+∠OAB=60°,
    ∴∠EAC=60°,
    ∴△ACE是等边三角形,
    ∴AE=AC=,
    ∴AF=AE=,EF==1,
    ∴OF=OA﹣AF=,
    ∴点E的坐标为(,1).

    【点睛】
    此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.
    23、5
    【解析】
    试题分析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设⊙O的半径为r,
    在△ACD中,利用勾股定理求得CD=2,在△OAD中,由OA2=OD2+AD2,代入相关数量求解即可得.
    试题解析:连接OC交AB于D,连接OA,
    由垂径定理得OD垂直平分AB,
    设⊙O的半径为r,
    在△ACD中,CD2+AD2=AC2,CD=2,
    在△OAD中,OA2=OD2+AD2,r2=(r-2)2+16,
    解得r=5,
    ∴☉O的半径为5.

    24、 (1)x=1;(2),;(3)
    【解析】
    (1)二次函数的对称轴为直线x=-,带入即可求出对称轴,
    (2)在区间内发现能够取到函数的最低点,即为顶点坐标,当开口向上是,距离对称轴越远,函数值越大,所以当x=5时,函数有最大值.
    (3)分类讨论,当二次函数开口向上时不满足条件,所以函数图像开口只能向下,且应该介于-1和3之间,才会使,解不等式组即可.
    【详解】
    (1)该二次函数图象的对称轴是直线;
    (2)∵该二次函数的图象开口向上,对称轴为直线,,
    ∴当时,的值最大,即.
    把代入,解得.
    ∴该二次函数的表达式为.
    当时,,
    ∴.
    (3)易知a0,
    ∵当时,均有,
    ∴,解得
    ∴的取值范围.
    【点睛】
    本题考查了二次函数的对称轴,定区间内求函数值域,以及二次函数图像的性质,难度较大,综合性强,熟悉二次函数的单调性是解题关键.

    相关试卷

    2024年贵州省黔东南州剑河四中中考数学模拟试卷 (含解析): 这是一份2024年贵州省黔东南州剑河四中中考数学模拟试卷 (含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年贵州省黔东南州凯里学院附中中考数学一模试卷(含解析): 这是一份2023年贵州省黔东南州凯里学院附中中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2022-2023学年贵州省黔东南州凯里六中七年级(下)期中数学试卷(含解析): 这是一份2022-2023学年贵州省黔东南州凯里六中七年级(下)期中数学试卷(含解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map