终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022届广东省东莞市石碣镇市级名校中考四模数学试题含解析

    立即下载
    加入资料篮
    2022届广东省东莞市石碣镇市级名校中考四模数学试题含解析第1页
    2022届广东省东莞市石碣镇市级名校中考四模数学试题含解析第2页
    2022届广东省东莞市石碣镇市级名校中考四模数学试题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届广东省东莞市石碣镇市级名校中考四模数学试题含解析

    展开

    这是一份2022届广东省东莞市石碣镇市级名校中考四模数学试题含解析,共20页。试卷主要包含了cs30°=等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为( )米

    A. B. C.+1 D.3
    2.如图,将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,连接AA',若∠1=20°,则∠B的度数是( )

    A.70° B.65° C.60° D.55°
    3.下列运算正确的是 ( )
    A.2+a=3 B. =
    C. D.=
    4.cos30°=( )
    A. B. C. D.
    5.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为(  )
    A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣10
    6.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为(  )

    A.6 B.12 C.18 D.24
    7.2017上半年,四川货物贸易进出口总值为2 098.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2098.7亿元用科学记数法表示是(  )
    A.2.098 7×103 B.2.098 7×1010 C.2.098 7×1011 D.2.098 7×1012
    8.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是(  )

    A.(﹣2,4),(1,3) B.(﹣2,4),(2,3)
    C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)
    9.如图,有一些点组成形如四边形的图案,每条“边”(包括顶点)有n(n>1)个点.当n=2018时,这个图形总的点数S为(  )

    A.8064 B.8067 C.8068 D.8072
    10.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数上,且OA⊥OB,,则k的值为(  )

    A.﹣2 B.4 C.﹣4 D.2
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____.

    12.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为__________.

    13.如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,…,An,分别过这些点做x轴的垂线与反比例函数y=的图象相交于点P1,P2,P3,P4,…Pn,再分别过P2,P3,P4,…Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,PnBn﹣1⊥An﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,…,Bn﹣1,连接P1P2,P2P3,P3P4,…,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为_____.

    14.如图,在中,于点,于点,为边的中点,连接,则下列结论:①,②,③为等边三角形,④当时,.请将正确结论的序号填在横线上__.

    15.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,则k的值为_____.

    16.如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=16cm1,S△BQC=15cm1,则图中阴影部分的面积为_____cm1.

    17.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=26,CD=24,那么sin∠OCE=  ▲ .

    三、解答题(共7小题,满分69分)
    18.(10分)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.
    (2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.
    (3)应用:请利用(1)(2)获得的经验解决问题:
    如图3,在△ABD中,AB=6,AD=BD=1.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.

    19.(5分)许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A,B两点之间的距离他沿着与直线AB平行的道路EF行走,走到点C处,测得∠ACF=45°,再向前走300米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为200米,求A,B两点之间的距离(结果保留一位小数)

    20.(8分)先化简(-a+1)÷,并从0,-1,2中选一个合适的数作为a的值代入求值.
    21.(10分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC,AB于点E,F.
    (1)若∠B=30°,求证:以A,O,D,E为顶点的四边形是菱形;
    (2)填空:若AC=6,AB=10,连接AD,则⊙O的半径为  ,AD的长为   .

    22.(10分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.
    求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.
    23.(12分)2017年10月31日,在广州举行的世界城市日全球主场活动开幕式上,住建部公布许昌成为“国家生态园林城市”在2018年植树节到来之际,许昌某中学购买了甲、乙两种树木用于绿化校园.若购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元.
    (1)求甲种树和乙种树的单价;
    (2)按学校规划,准备购买甲、乙两种树共200棵,且甲种树的数量不少于乙种树的数量的,请设计出最省钱的购买方案,并说明理由.
    24.(14分)如图,已知,.求证.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    由题意可知,AC=1,AB=2,∠CAB=90°
    据勾股定理则BC=m;
    ∴AC+BC=(1+)m.
    答:树高为(1+)米.
    故选C.
    2、B
    【解析】
    根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.
    【详解】
    ∵将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,
    ∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,
    ∴∠AA′C=45°,
    ∵∠1=20°,
    ∴∠B′A′C=45°-20°=25°,
    ∴∠A′B′C=90°-25°=65°,
    ∴∠B=65°.
    故选B.
    【点睛】
    本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.
    3、D
    【解析】
    根据整式的混合运算计算得到结果,即可作出判断.
    【详解】
    A、2与a 不是同类项,不能合并,不符合题意;
    B、 =,不符合题意;
    C、原式=,不符合题意;
    D、=,符合题意,
    故选D.
    【点睛】
    此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
    4、C
    【解析】
    直接根据特殊角的锐角三角函数值求解即可.
    【详解】

    故选C.
    【点睛】
    考点:特殊角的锐角三角函数
    点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.
    5、C
    【解析】
    本题根据科学记数法进行计算.
    【详解】
    因为科学记数法的标准形式为a×(1≤|a|≤10且n为整数),因此0.000000007用科学记数法法可表示为7×,
    故选C.
    【点睛】
    本题主要考察了科学记数法,熟练掌握科学记数法是本题解题的关键.
    6、B
    【解析】
    ∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,
    ∵AC的垂直平分线交AD于点E,∴AE=CE,
    ∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12,
    故选B.
    7、C
    【解析】
    将2098.7亿元用科学记数法表示是2.0987×1011,
    故选:C.
    点睛: 本题考查了正整数指数科学计数法,对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.
    8、A
    【解析】
    作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.
    【详解】
    解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.
    ∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.
    ∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).
    同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).
    故选A.

    【点睛】
    本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.
    9、C
    【解析】
    分析:本题重点注意各个顶点同时在两条边上,计算点的个数时,不要把顶点重复计算了.
    详解:此题中要计算点的个数,可以类似周长的计算方法进行,但应注意各个顶点重复了一次.
    如当n=2时,共有S2=4×2﹣4=4;当n=3时,共有S3=4×3﹣4,…,依此类推,即Sn=4n﹣4,当n=2018时,S2018=4×2018﹣4=1.
    故选C.
    点睛:本题考查了图形的变化类问题,关键是通过归纳与总结,得到其中的规律.
    10、C
    【解析】
    试题分析:作AC⊥x轴于点C,作BD⊥x轴于点D.

    则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,
    ∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=(tanA)2=2,
    又∵S△AOC=×2=1,∴S△OBD=2,∴k=-1.
    故选C.
    考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征.

    二、填空题(共7小题,每小题3分,满分21分)
    11、或10
    【解析】
    试题分析:根据题意,可分为E点在DC上和E在DC的延长线上,两种情况求解即可:
    如图①,当点E在DC上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=2,设FE=x,则FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=.(2)如图②,当,所以FQ=点E在DG的延长线上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=8,设DE=x,则FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,综上所述,DE=或10.

    12、4.1
    【解析】
    解:如图所示:∵四边形ABCD是矩形,
    ∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,
    根据题意得:△ABP≌△EBP,
    ∴EP=AP,∠E=∠A=90°,BE=AB=1,
    在△ODP和△OEG中,

    ∴△ODP≌△OEG(ASA),
    ∴OP=OG,PD=GE,
    ∴DG=EP,
    设AP=EP=x,则PD=GE=6﹣x,DG=x,
    ∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,
    根据勾股定理得:BC2+CG2=BG2,
    即62+(1﹣x)2=(x+2)2,
    解得:x=4.1,
    ∴AP=4.1;
    故答案为4.1.

    13、
    【解析】
    解:设OA1=A1A2=A2A3=…=An-2An-1=An-1An=a,
    ∵当x=a时,,∴P1的坐标为(a,),
    当x=2a时,,∴P2的坐标为(2a,),
    ……
    ∴Rt△P1B1P2的面积为,
    Rt△P2B2P3的面积为,
    Rt△P3B3P4的面积为,
    ……
    ∴Rt△Pn-1Bn-1Pn的面积为.
    故答案为:
    14、①③④
    【解析】
    ①根据直角三角形斜边上的中线等于斜边的一半可判断①;
    ②先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②;
    ③先根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断③;
    ④当∠ABC=45°时,∠BCN=45°,进而判断④.
    【详解】
    ①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,
    ∴PM=BC,PN=BC,
    ∴PM=PN,正确;
    ②在△ABM与△ACN中,
    ∵∠A=∠A,∠AMB=∠ANC=90°,
    ∴△ABM∽△ACN,
    ∴,错误;
    ③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,
    ∴∠ABM=∠ACN=30°,
    在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,
    ∵点P是BC的中点,BM⊥AC,CN⊥AB,
    ∴PM=PN=PB=PC,
    ∴∠BPN=2∠BCN,∠CPM=2∠CBM,
    ∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,
    ∴∠MPN=60°,
    ∴△PMN是等边三角形,正确;
    ④当∠ABC=45°时,∵CN⊥AB于点N,
    ∴∠BNC=90°,∠BCN=45°,
    ∵P为BC中点,可得BC=PB=PC,故④正确.
    所以正确的选项有:①③④
    故答案为①③④
    【点睛】
    本题主要考查了直角三角形斜边的中线等于斜边的一半的性质,相似三角形、等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析图形并熟练掌握性质是解题的关键.
    15、1
    【解析】
    根据题意和旋转的性质,可以得到点C的坐标,把点C坐标代入反比例函数y=中,即可求出k的值.
    【详解】
    ∵OB在x轴上,∠ABO=90°,点A的坐标为(2,4),∴OB=2,AB=4
    ∵将△AOB绕点A逆时针旋转90°,∴AD=4,CD=2,且AD//x轴
    ∴点C的坐标为(6,2),
    ∵点O的对应点C恰好落在反比例函数y=的图象上,
    ∴k=2,
    故答案为1.
    【点睛】
    本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答.
    16、41
    【解析】
    试题分析:如图,连接EF
    ∵△ADF与△DEF同底等高,
    ∴S△ADF=S△DEF,
    即S△ADF-S△DPF=S△DEF-S△DPF,
    即S△APD=S△EPF=16cm1,
    同理可得S△BQC=S△EFQ=15cm1,、
    ∴阴影部分的面积为S△EPF+S△EFQ=16+15=41cm1.

    考点:1、三角形面积,1、平行四边形
    17、
    【解析】垂径定理,勾股定理,锐角三角函数的定义。
    【分析】如图,

    设AB与CD相交于点E,则根据直径AB=26,得出半径OC=13;由CD=24,CD⊥AB,根据垂径定理得出CE=12;在Rt△OCE中,利用勾股定理求出OE=5;再根据正弦函数的定义,求出sin∠OCE的度数:


    三、解答题(共7小题,满分69分)
    18、(2)证明见解析;(2)结论成立,理由见解析;(3)2秒或2秒.
    【解析】
    (2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;
    (2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;
    (3)过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=2-4=2.易证∠DPC=∠A=∠B.根据ADBC=APBP,就可求出t的值.
    【详解】
    解:(2)如图2,
    ∵∠DPC=∠A=∠B=90°,
    ∴∠ADP+∠APD=90°,
    ∠BPC+∠APD=90°,
    ∴∠APD=∠BPC,
    ∴△ADP∽△BPC,
    ∴,
    ∴ADBC=APBP;
    (2)结论ADBC=APBP仍成立;
    证明:如图2,∵∠BPD=∠DPC+∠BPC,
    又∵∠BPD=∠A+∠APD,
    ∴∠DPC+∠BPC=∠A+∠APD,
    ∵∠DPC=∠A=θ,
    ∴∠BPC=∠APD,
    又∵∠A=∠B=θ,
    ∴△ADP∽△BPC,
    ∴,
    ∴ADBC=APBP;
    (3)如下图,过点D作DE⊥AB于点E,

    ∵AD=BD=2,AB=6,
    ∴AE=BE=3
    ∴DE==4,
    ∵以D为圆心,以DC为半径的圆与AB相切,
    ∴DC=DE=4,
    ∴BC=2-4=2,
    ∵AD=BD,
    ∴∠A=∠B,
    又∵∠DPC=∠A,
    ∴∠DPC=∠A=∠B,
    由(2)(2)的经验得AD•BC=AP•BP,
    又∵AP=t,BP=6-t,
    ∴t(6-t)=2×2,
    ∴t=2或t=2,
    ∴t的值为2秒或2秒.
    【点睛】
    本题考查圆的综合题.
    19、215.6米.
    【解析】
    过A点做EF的垂线,交EF于M点,过B点做EF的垂线,交EF于N点,
    根据Rt△ACM和三角函数求出CM、DN,然后根据即可求出A、B两点间的距离.
    【详解】
    解:过A点做EF的垂线,交EF于M点,过B点做EF的垂线,交EF于N点
    在Rt△ACM中,∵,
    ∴AM=CM=200米,
    又∵CD=300米,所以米,
    在Rt△BDN中,∠BDF=60°,BN=200米
    ∴米,
    ∴米
    即A,B两点之间的距离约为215.6米.
    【点睛】
    本题主要考查三角函数,正确做辅助线是解题的关键.
    20、1.
    【解析】
    试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.
    试题解析:原式===;
    当a=0时,原式=1.
    考点:分式的化简求值.
    21、 (1) 见解析;(2)
    【解析】
    (1) 先通过证明△AOE为等边三角形, 得出AE=OD, 再根据“同位角相等, 两直线平行” 证明AE//OD, 从而证得四边形AODE是平行四边形, 再根据 “一组邻边相等的平行四边形为菱形” 即可得证.
    (2) 利用在Rt△OBD中,sin∠B==可得出半径长度,在Rt△ODB中BD=,可求得BD的长,由CD=CB﹣BD可得CD的长,在RT△ACD中,AD=,即可求出AD长度.
    【详解】
    解:(1)证明:
    连接OE、ED、OD,
    在Rt△ABC中,∵∠B=30°,
    ∴∠A=60°,
    ∵OA=OE,∴△AEO是等边三角形,
    ∴AE=OE=AO
    ∵OD=OA,
    ∴AE=OD
    ∵BC是圆O的切线,OD是半径,
    ∴∠ODB=90°,又∵∠C=90°
    ∴AC∥OD,又∵AE=OD
    ∴四边形AODE是平行四边形,
    ∵OD=OA
    ∴四边形AODE是菱形.
    (2)
    在Rt△ABC中,∵AC=6,AB=10,
    ∴sin∠B==,BC=8
    ∵BC是圆O的切线,OD是半径,
    ∴∠ODB=90°,
    在Rt△OBD中,sin∠B==,
    ∴OB=OD
    ∵AO+OB=AB=10,
    ∴OD+OD=10
    ∴OD=
    ∴OB=OD=
    ∴BD=
    =5
    ∴CD=CB﹣BD=3
    ∴AD=
    =
    =3.
    【点睛】
    本题主要考查圆中的计算问题、 菱形以及相似三角形的判定与性质
    22、 (1)证明见解析;(2)四边形BDCF是矩形,理由见解析.
    【解析】
    (1)证明:∵CF∥AB,
    ∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,
    ∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.
    (2)四边形BDCF是矩形.
    证明:由(1)知DB=CF,又DB∥CF,
    ∴四边形BDCF为平行四边形.
    ∵AC=BC,AD=DB,∴CD⊥AB.
    ∴四边形BDCF是矩形.
    23、(1)甲种树的单价为50元/棵,乙种树的单价为40元/棵.(2)当购买1棵甲种树、133棵乙种树时,购买费用最低,理由见解析.
    【解析】
    (1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,根据“购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
    (2)设购买甲种树a棵,则购买乙种树(200-a)棵,根据甲种树的数量不少于乙种树的数量的可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由甲种树的单价比乙种树的单价贵,即可找出最省钱的购买方案.
    【详解】
    解:(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,
    根据题意得:

    解得:
    答:甲种树的单价为50元/棵,乙种树的单价为40元/棵.
    (2)设购买甲种树a棵,则购买乙种树(200﹣a)棵,
    根据题意得:
    解得:
    ∵a为整数,
    ∴a≥1.
    ∵甲种树的单价比乙种树的单价贵,
    ∴当购买1棵甲种树、133棵乙种树时,购买费用最低.
    【点睛】
    一元一次不等式的应用,二元一次方程组的应用,读懂题目,是解题的关键.
    24、见解析
    【解析】
    根据∠ABD=∠DCA,∠ACB=∠DBC,求证∠ABC=∠DCB,然后利用AAS可证明△ABC≌△DCB,即可证明结论.
    【详解】
    证明:∵∠ABD=∠DCA,∠DBC=∠ACB
    ∴∠ABD+∠DBC=∠DCA+∠ACB
    即∠ABC=∠DCB
    在△ABC和△DCB中

    ∴△ABC≌△DCB(ASA)
    ∴AB=DC
    【点睛】
    本题主要考查学生对全等三角形的判定与性质的理解和掌握,证明此题的关键是求证△ABC≌△DCB.难度不大,属于基础题.

    相关试卷

    85,2024年广东省东莞市石碣镇中考一模数学试题:

    这是一份85,2024年广东省东莞市石碣镇中考一模数学试题,共23页。试卷主要包含了8万亿用科学记数法表示为, 定义=ad﹣bc,例如, 若点A等内容,欢迎下载使用。

    2023年广东省东莞市石碣镇中考数学一模试卷:

    这是一份2023年广东省东莞市石碣镇中考数学一模试卷,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年广东省龙华新区市级名校中考联考数学试题含解析:

    这是一份2022年广东省龙华新区市级名校中考联考数学试题含解析,共19页。试卷主要包含了答题时请按要求用笔,计算3a2-a2的结果是,点A等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map