|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届广东省华师附中实验校中考数学全真模拟试卷含解析
    立即下载
    加入资料篮
    2022届广东省华师附中实验校中考数学全真模拟试卷含解析01
    2022届广东省华师附中实验校中考数学全真模拟试卷含解析02
    2022届广东省华师附中实验校中考数学全真模拟试卷含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届广东省华师附中实验校中考数学全真模拟试卷含解析

    展开
    这是一份2022届广东省华师附中实验校中考数学全真模拟试卷含解析,共25页。试卷主要包含了股市有风险,投资需谨慎,方程的解是.等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是( )

    A. B. C. D.
    2.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F, S△AEF=3,则S△FCD为(  )

    A.6 B.9 C.12 D.27
    3.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.
    A. B. C. D.
    4.如图,某计算机中有、、三个按键,以下是这三个按键的功能.
    (1).:将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下后会变成1.
    (2).:将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.2.
    (3).:将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下后会变成3.
    若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、、的顺序轮流按,则当他按了第100下后荧幕显示的数是多少(  )

    A.0.01 B.0.1 C.10 D.100
    5.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是(  )
    A.无实数根
    B.有两个正根
    C.有两个根,且都大于﹣3m
    D.有两个根,其中一根大于﹣m
    6.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA的值为(  )
    A. B. C. D.
    7.等腰三角形三边长分别为,且是关于的一元二次方程的两根,则的值为( )
    A.9 B.10 C.9或10 D.8或10
    8.下列图形中,线段MN的长度表示点M到直线l的距离的是( )
    A. B. C. D.
    9.股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为( )
    A.9.5×106 B.9.5×107 C.9.5×108 D.9.5×109
    10.方程的解是( ).
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.某种商品两次降价后,每件售价从原来元降到元,平均每次降价的百分率是__________.
    12.北京奥运会国家体育场“鸟巢”的建筑面积为258000平方米,那么258000用科学记数法可表示为 .
    13.函数y=中自变量x的取值范围是___________.
    14.如图,在□ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是________.

    15.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为 时,四边ABC1D1为矩形;当点B的移动距离为 时,四边形ABC1D1为菱形.

    16.在一个不透明的口袋中,有3个红球、2个黄球、一个白球,它们除颜色不同之外其它完全相同,现从口袋中随机摸出一个球记下颜色后放回,再随机摸出一个球,则两次摸到一个红球和一个黄球的概率是_____.
    三、解答题(共8题,共72分)
    17.(8分)在中, , 是的角平分线,交于点 .
    (1)求的长;
    (2)求的长.

    18.(8分)阅读与应用:
    阅读1:a、b为实数,且a>0,b>0,因为,所以,从而(当a=b时取等号).
    阅读2:函数(常数m>0,x>0),由阅读1结论可知: ,所以当即时,函数的最小值为.
    阅读理解上述内容,解答下列问题:
    问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为,求当x=__________时,周长的最小值为__________.
    问题2:已知函数y1=x+1(x>-1)与函数y2=x2+2x+17(x>-1),当x=__________时, 的最小值为__________.
    问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.1.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)
    19.(8分)先化简,再求值:,再从的范围内选取一个你最喜欢的值代入,求值.
    20.(8分)计算:2tan45°-(-)º-
    21.(8分)两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知∠COD=∠OAB=90°,OC=,反比例函数y=的图象经过点B.求k的值.把△OCD沿射线OB移动,当点D落在y=图象上时,求点D经过的路径长.

    22.(10分)(问题情境)
    张老师给爱好学习的小军和小俊提出这样的一个问题:如图1,在△ABC中,AB=AC,点P为边BC上任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.

    小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
    小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.
    [变式探究]
    如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;
    请运用上述解答中所积累的经验和方法完成下列两题:
    [结论运用]
    如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;
    [迁移拓展]
    图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.
    23.(12分)已知,抛物线y=x2﹣x+与x轴分别交于A、B两点(A点在B点的左侧),交y轴于点F.
    (1)A点坐标为   ;B点坐标为   ;F点坐标为   ;
    (2)如图1,C为第一象限抛物线上一点,连接AC,BF交于点M,若BM=FM,在直线AC下方的抛物线上是否存在点P,使S△ACP=4,若存在,请求出点P的坐标,若不存在,请说明理由;
    (3)如图2,D、E是对称轴右侧第一象限抛物线上的两点,直线AD、AE分别交y轴于M、N两点,若OM•ON=,求证:直线DE必经过一定点.

    24.已知关于 的方程mx2+(2m-1)x+m-1=0(m≠0) . 求证:方程总有两个不相等的实数根; 若方程的两个实数根都是整数,求整数 的值.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    观察图形,利用中心对称图形的性质解答即可.
    【详解】
    选项A,新图形不是中心对称图形,故此选项错误;
    选项B,新图形是中心对称图形,故此选项正确;
    选项C,新图形不是中心对称图形,故此选项错误;
    选项D,新图形不是中心对称图形,故此选项错误;
    故选B.
    【点睛】
    本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.
    2、D
    【解析】
    先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.
    【详解】
    解:∵四边形ABCD是平行四边形,AE:EB=1:2,
    ∴AE:CD=1:3,
    ∵AB∥CD,
    ∴∠EAF=∠DCF,
    ∵∠DFC=∠AFE,
    ∴△AEF∽△CDF,
    ∵S△AEF=3,
    ∴==()2,
    解得S△FCD=1.
    故选D.
    【点睛】
    本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.
    3、B
    【解析】
    设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.
    【详解】
    解:设商品的进价为x元,售价为每件0.8×200元,由题意得
    0.8×200=x+40
    解得:x=120
    答:商品进价为120元.
    故选:B.
    【点睛】
    此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.
    4、B
    【解析】
    根据题中的按键顺序确定出显示的数即可.
    【详解】
    解:根据题意得: =40,
    =0.4,
    0.42=0.04,
    =0.4,
    =40,
    402=400,
    400÷6=46…4,
    则第400次为0.4.
    故选B.
    【点睛】
    此题考查了计算器﹣数的平方,弄清按键顺序是解本题的关键.
    5、A
    【解析】
    先整理为一般形式,用含m的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.
    【详解】
    方程整理为,
    △,
    ∵,
    ∴,
    ∴△,
    ∴方程没有实数根,
    故选A.
    【点睛】
    本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
    6、C
    【解析】
    先根据勾股定理求出BC得长,再根据锐角三角函数正弦的定义解答即可.
    【详解】
    如图,根据勾股定理得,BC==12,
    ∴sinA=.
    故选C.

    【点睛】
    本题考查了锐角三角函数的定义及勾股定理,熟知锐角三角函数正弦的定义是解决问题的关键.
    7、B
    【解析】
    由题意可知,等腰三角形有两种情况:当a,b为腰时,a=b,由一元二次方程根与系数的关系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;当2为腰时,a=2(或b=2),此时2+b=6(或a+2=6),解得b=4(a=4),这时三边为2,2,4,不符合三角形三边关系:两边之和大于第三边,两边之差小于第三边,故不合题意.所以n只能为1.
    故选B
    8、A
    【解析】
    解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;
    图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.
    9、B
    【解析】
    试题分析: 15000000=1.5×2.故选B.
    考点:科学记数法—表示较大的数
    10、B
    【解析】
    直接解分式方程,注意要验根.
    【详解】
    解:=0,
    方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,
    解这个一元一次方程,得:x=,
    经检验,x=是原方程的解.
    故选B.
    【点睛】
    本题考查了解分式方程,解分式方程不要忘记验根.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    设降价的百分率为x,则第一次降价后的单价是原来的(1−x),第二次降价后的单价是原来的(1−x)2,根据题意列方程解答即可.
    【详解】
    解:设降价的百分率为x,根据题意列方程得:
    100×(1−x)2=81
    解得x1=0.1,x2=1.9(不符合题意,舍去).
    所以降价的百分率为0.1,即10%.
    故答案为:10%.
    【点睛】
    本题考查了一元二次方程的应用.找到关键描述语,根据等量关系准确的列出方程是解决问题的关键.还要判断所求的解是否符合题意,舍去不合题意的解.
    12、2.58×1
    【解析】
    科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.258 000=2.58×1.
    13、x≥﹣且x≠1
    【解析】
    试题解析:根据题意得:
    解得:x≥﹣且x≠1.
    故答案为:x≥﹣且x≠1.
    14、2
    【解析】
    试题解析:连接EG,

    ∵由作图可知AD=AE,AG是∠BAD的平分线,
    ∴∠1=∠2,
    ∴AG⊥DE,OD=DE=1.
    ∵四边形ABCD是平行四边形,
    ∴CD∥AB,
    ∴∠2=∠1,
    ∴∠1=∠1,
    ∴AD=DG.
    ∵AG⊥DE,
    ∴OA=AG.
    在Rt△AOD中,OA==4,
    ∴AG=2AO=2.
    故答案为2.
    15、,.
    【解析】
    试题分析:当点B的移动距离为时,∠C1BB1=60°,则∠ABC1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC1D1为矩形;当点B的移动距离为时,D、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC1D1为菱形.
    试题解析:如图:

    当四边形ABC1D是矩形时,∠B1BC1=90°﹣30°=60°,
    ∵B1C1=1,
    ∴BB1=,
    当点B的移动距离为时,四边形ABC1D1为矩形;
    当四边形ABC1D是菱形时,∠ABD1=∠C1BD1=30°,
    ∵B1C1=1,
    ∴BB1=,
    当点B的移动距离为时,四边形ABC1D1为菱形.
    考点:1.菱形的判定;2.矩形的判定;3.平移的性质.
    16、
    【解析】
    先画树状图展示所有36种等可能的结果数,再找出两次摸到一个红球和一个黄球的结果数,然后根据概率公式求解.
    【详解】
    画树状图如下:

    由树状图可知,共有36种等可能结果,其中两次摸到一个红球和一个黄球的结果数为12,
    所以两次摸到一个红球和一个黄球的概率为,
    故答案为.
    【点睛】
    本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.

    三、解答题(共8题,共72分)
    17、(1)10;(2)的长为
    【解析】
    (1)利用勾股定理求解;(2)过点作于,利用角平分线的性质得到CD=DE,然后根据HL定理证明,设,根据勾股定理列方程求解.
    【详解】
    解:(1) 在中,
    ;
    (2 )过点作于,
    平分

    在和中

    ,


    .
    设,则
    在中,

    解得
    即的长为

    【点睛】
    本题考查了角平分线上的点到角的两边距离相等的性质,勾股定理,全等三角形的判定与性质,难点在于(2)多次利用勾股定理.
    18、问题1: 2 8 问题2: 3 8 问题3:设学校学生人数为x人,生均投入为y元,依题意得: ,因为x>0,所以,当即x=800时,y取最小值2.答:当学校学生人数为800人时,该校每天生均投入最低,最低费用是2元.
    【解析】试题分析:
    问题1:当 时,周长有最小值,求x的值和周长最小值;
    问题2:变形,由当x+1= 时, 的最小值,求出x值和的最小值;
    问题3:设学校学生人数为x人,生均投入为y元,根据生均投入=支出总费用÷学生人数,列出关系式,根据前两题解法,从而求解.
    试题解析:
    问题1:∵当 ( x>0)时,周长有最小值,
    ∴x=2,
    ∴当x=2时,有最小值为=3.即当x=2时,周长的最小值为2×3=8;
    问题2:∵y1=x+1(x>-1)与函数y2=x2+2x+17(x>-1),
    ∴,
    ∵当x+1= (x>-1)时, 的最小值,
    ∴x=3,
    ∴x=3时, 有最小值为3+3=8,即当x=3时, 的最小值为8;
    问题3:设学校学生人数为x人,则生均投入y元,依题意得
    ,因为x>0,所以,当即x=800时,y取最小值2.
    答:当学校学生人数为800时,该校每天生均投入最低,最低费用是2元.
    19、原式=,把x=2代入的原式=1.
    【解析】
    试题分析:先对原分式的分子、分母进行因式分解,然后按顺序进行乘除法运算、加减法运算,最后选取有意义的数值代入计算即可.
    试题解析:原式= =
    当x=2时,原式=1
    20、2-
    【解析】
    先求三角函数,再根据实数混合运算法计算.
    【详解】
    解:原式=2×1-1-=1+1-=2-
    【点睛】
    此题重点考察学生对三角函数值的应用,掌握特殊角的三角函数值是解题的关键.
    21、(1)k=2;(2)点D经过的路径长为.
    【解析】
    (1)根据题意求得点B的坐标,再代入求得k值即可;
    (2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M(如图),根据已知条件可求得点D的坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的长,即可得点D经过的路径长.
    【详解】
    (1)∵△AOB和△COD为全等三的等腰直角三角形,OC=,
    ∴AB=OA=OC=OD=,
    ∴点B坐标为(,),
    代入得k=2;
    (2)设平移后与反比例函数图象的交点为D′,
    由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M,如图,

    ∵OC=OD=,∠AOB=∠COM=45°,
    ∴OM=MC=MD=1,
    ∴D坐标为(﹣1,1),
    设D′横坐标为t,则OE=MF=t,
    ∴D′F=DF=t+1,
    ∴D′E=D′F+EF=t+2,
    ∴D′(t,t+2),
    ∵D′在反比例函数图象上,
    ∴t(t+2)=2,解得t=或t=﹣﹣1(舍去),
    ∴D′(﹣1, +1),
    ∴DD′=,
    即点D经过的路径长为.
    【点睛】
    本题是反比例函数与几何的综合题,求得点D′的坐标是解决第(2)问的关键.
    22、小军的证明:见解析;小俊的证明:见解析;[变式探究]见解析;[结论运用]PG+PH的值为1;[迁移拓展](6+2)dm
    【解析】
    小军的证明:连接AP,利用面积法即可证得;
    小俊的证明:过点P作PG⊥CF,先证明四边形PDFG为矩形,再证明△PGC≌△CEP,即可得到答案;
    [变式探究]小军的证明思路:连接AP,根据S△ABC=S△ABP﹣S△ACP,即可得到答案;
    小俊的证明思路:过点C,作CG⊥DP,先证明四边形CFDG是矩形,再证明△CGP≌△CEP即可得到答案;
    [结论运用] 过点E作EQ⊥BC,先根据矩形的性质求出BF,根据翻折及勾股定理求出DC,证得四边形EQCD是矩形,得出BE=BF即可得到答案;
    [迁移拓展]延长AD,BC交于点F,作BH⊥AF,证明△ADE∽△BCE得到FA=FB,设DH=x,利用勾股定理求出x得到BH=6,再根据∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点即可得到答案.
    【详解】
    小军的证明:
    连接AP,如图②

    ∵PD⊥AB,PE⊥AC,CF⊥AB,
    ∴S△ABC=S△ABP+S△ACP,
    ∴AB×CF=AB×PD+AC×PE,
    ∵AB=AC,
    ∴CF=PD+PE.
    小俊的证明:
    过点P作PG⊥CF,如图2,
    ∵PD⊥AB,CF⊥AB,PG⊥FC,
    ∴∠CFD=∠FDG=∠FGP=90°,
    ∴四边形PDFG为矩形,
    ∴DP=FG,∠DPG=90°,
    ∴∠CGP=90°,
    ∵PE⊥AC,
    ∴∠CEP=90°,
    ∴∠PGC=∠CEP,
    ∵∠BDP=∠DPG=90°,
    ∴PG∥AB,
    ∴∠GPC=∠B,
    ∵AB=AC,
    ∴∠B=∠ACB,
    ∴∠GPC=∠ECP,
    在△PGC和△CEP中

    ∴△PGC≌△CEP,
    ∴CG=PE,
    ∴CF=CG+FG=PE+PD;
    [变式探究]
    小军的证明思路:连接AP,如图③,

    ∵PD⊥AB,PE⊥AC,CF⊥AB,
    ∴S△ABC=S△ABP﹣S△ACP,
    ∴AB×CF=AB×PD﹣AC×PE,
    ∵AB=AC,
    ∴CF=PD﹣PE;
    小俊的证明思路:
    过点C,作CG⊥DP,如图③,
    ∵PD⊥AB,CF⊥AB,CG⊥DP,
    ∴∠CFD=∠FDG=∠DGC=90°,
    ∴CF=GD,∠DGC=90°,四边形CFDG是矩形,
    ∵PE⊥AC,
    ∴∠CEP=90°,
    ∴∠CGP=∠CEP,
    ∵CG⊥DP,AB⊥DP,
    ∴∠CGP=∠BDP=90°,
    ∴CG∥AB,
    ∴∠GCP=∠B,
    ∵AB=AC,
    ∴∠B=∠ACB,
    ∵∠ACB=∠PCE,
    ∴∠GCP=∠ECP,
    在△CGP和△CEP中,

    ∴△CGP≌△CEP,
    ∴PG=PE,
    ∴CF=DG=DP﹣PG=DP﹣PE.
    [结论运用]
    如图④

    过点E作EQ⊥BC,
    ∵四边形ABCD是矩形,
    ∴AD=BC,∠C=∠ADC=90°,
    ∵AD=8,CF=3,
    ∴BF=BC﹣CF=AD﹣CF=5,
    由折叠得DF=BF,∠BEF=∠DEF,
    ∴DF=5,
    ∵∠C=90°,
    ∴DC==1,
    ∵EQ⊥BC,∠C=∠ADC=90°,
    ∴∠EQC=90°=∠C=∠ADC,
    ∴四边形EQCD是矩形,
    ∴EQ=DC=1,
    ∵AD∥BC,
    ∴∠DEF=∠EFB,
    ∵∠BEF=∠DEF,
    ∴∠BEF=∠EFB,
    ∴BE=BF,
    由问题情景中的结论可得:PG+PH=EQ,
    ∴PG+PH=1.
    ∴PG+PH的值为1.
    [迁移拓展]
    延长AD,BC交于点F,作BH⊥AF,如图⑤,

    ∵AD×CE=DE×BC,
    ∴,
    ∵ED⊥AD,EC⊥CB,
    ∴∠ADE=∠BCE=90°,
    ∴△ADE∽△BCE,
    ∴∠A=∠CBE,
    ∴FA=FB,
    由问题情景中的结论可得:ED+EC=BH,
    设DH=x,
    ∴AH=AD+DH=3+x,
    ∵BH⊥AF,
    ∴∠BHA=90°,
    ∴BH2=BD2﹣DH2=AB2﹣AH2,
    ∵AB=2,AD=3,BD=,
    ∴()2﹣x2=(2)2﹣(3+x)2,
    ∴x=1,
    ∴BH2=BD2﹣DH2=37﹣1=36,
    ∴BH=6,
    ∴ED+EC=6,
    ∵∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点,
    ∴DM=EM=AE,CN=EN=BE,
    ∴△DEM与△CEN的周长之和
    =DE+DM+EM+CN+EN+EC
    =DE+AE+BE+EC
    =DE+AB+EC
    =DE+EC+AB
    =6+2,
    ∴△DEM与△CEN的周长之和(6+2)dm.
    【点睛】
    此题是一道综合题,考查三角形全等的判定及性质,勾股定理,矩形的性质定理,三角形的相似的判定及性质定理,翻折的性质,根据题中小军和小俊的思路进行证明,故正确理解题意由此进行后面的证明是解题的关键.
    23、(1)(1,0),(3,0),(0,);(2)在直线AC下方的抛物线上不存在点P,使S△ACP=4,见解析;(3)见解析
    【解析】
    (1)根据坐标轴上点的特点建立方程求解,即可得出结论;
    (2)在直线AC下方轴x上一点,使S△ACH=4,求出点H坐标,再求出直线AC的解析式,进而得出点H坐标,最后用过点H平行于直线AC的直线与抛物线解析式联立求解,即可得出结论;
    (3)联立直线DE的解析式与抛物线解析式联立,得出,进而得出,,再由得出,进而求出,同理可得,再根据,即可得出结论.
    【详解】
    (1)针对于抛物线,
    令x=0,则,
    ∴,
    令y=0,则,
    解得,x=1或x=3,
    ∴,
    综上所述:,,;
    (2)由(1)知,,,
    ∵BM=FM,
    ∴,
    ∵,
    ∴直线AC的解析式为:,
    联立抛物线解析式得:,
    解得:或,
    ∴,
    如图1,设H是直线AC下方轴x上一点,AH=a且S△ACH=4,
    ∴,
    解得:,
    ∴,
    过H作l∥AC,
    ∴直线l的解析式为,
    联立抛物线解析式,解得,
    ∴,
    即:在直线AC下方的抛物线上不存在点P,使;

    (3)如图2,过D,E分别作x轴的垂线,垂足分别为G,H,
    设,,直线DE的解析式为,
    联立直线DE的解析式与抛物线解析式联立,得,
    ∴,,
    ∵DG⊥x轴,
    ∴DG∥OM,
    ∴,
    ∴,
    即,
    ∴,同理可得
    ∴,
    ∴,
    即,
    ∴,
    ∴直线DE的解析式为,
    ∴直线DE必经过一定点.

    【点睛】
    本题主要考查了二次函数的综合应用,熟练掌握二次函数与一次函数的综合应用,交点的求法,待定系数法求函数解析式等方法式解决本题的关键.
    24、(1)证明见解析(2)m=1或m=-1
    【解析】
    试题分析:(1)由于m≠0,则计算判别式的值得到,从而可判断方程总有两个不相等的实数根;
    (2)先利用求根公式得到然后利用有理数的整除性确定整数的值.
    试题解析:(1)证明:∵m≠0,
    ∴方程为一元二次方程,

    ∴此方程总有两个不相等的实数根;
    (2)∵

    ∵方程的两个实数根都是整数,且m是整数,
    ∴m=1或m=−1.

    相关试卷

    广东省华师附中2022年中考数学全真模拟试题含解析: 这是一份广东省华师附中2022年中考数学全真模拟试题含解析,共18页。试卷主要包含了计算的结果是,二次函数y=﹣,二元一次方程组的解是,估计的值在等内容,欢迎下载使用。

    广东省华师附中实验校2022年中考试题猜想数学试卷含解析: 这是一份广东省华师附中实验校2022年中考试题猜想数学试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    广东省湛师附中、实验学校2022年中考数学模拟精编试卷含解析: 这是一份广东省湛师附中、实验学校2022年中考数学模拟精编试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法中,正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map