2022届江苏省南师附中集团达标名校中考数学适应性模拟试题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有( )
A.1个 B.3个 C.4个 D.5个
2.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是( )
A. B. C. D.
3.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为( )
A.115° B.120° C.130° D.140°
4.﹣2018的绝对值是( )
A.±2018 B.﹣2018 C.﹣ D.2018
5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是( )
A.6 B.7 C.11 D.12
6.下列等式正确的是( )
A.x3﹣x2=x B.a3÷a3=a
C. D.(﹣7)4÷(﹣7)2=﹣72
7.吉林市面积约为27100平方公里,将27100这个数用科学记数法表示为( )
A.27.1×102 B.2.71×103 C.2.71×104 D.0.271×105
8.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )
A. B. C. D
9.下列函数是二次函数的是( )
A. B. C. D.
10.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.方程的解是 .
12.两圆内切,其中一个圆的半径长为6,圆心距等于2,那么另一个圆的半径长等于__.
13.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米精确到1米
14.如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限,若反比例函数的图象经过点B,则k的值是_____.
15.小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下:
评价条数 等级
餐厅
五星
四星
三星
二星
一星
合计
甲
538
210
96
129
27
1000
乙
460
187
154
169
30
1000
丙
486
388
81
13
32
1000
(说明:网上对于餐厅的综合评价从高到低,依次为五星、四星、三星、二星和一星.)小芸选择在________(填"甲”、“乙"或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.
16.一次函数与的图象如图,则的解集是__.
三、解答题(共8题,共72分)
17.(8分)如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.
(1)求证:AE=BF;
(2)连接GB,EF,求证:GB∥EF;
(3)若AE=1,EB=2,求DG的长.
18.(8分)(1)计算:sin45°
(2)解不等式组:
19.(8分)如图,在平面直角坐标系中,二次函数的图象与轴交于,两点,与轴交于点,点的坐标为.
(1)求二次函数的解析式;
(2)若点是抛物线在第四象限上的一个动点,当四边形的面积最大时,求点的坐标,并求出四边形的最大面积;
(3)若为抛物线对称轴上一动点,直接写出使为直角三角形的点的坐标.
20.(8分)如图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.
以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.
21.(8分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.
(1)求证:PA是⊙O的切线;
(2)若tan∠BAD=,且OC=4,求BD的长.
22.(10分)2019年我市在“展销会”期间,对周边道路进行限速行驶.道路AB段为监测区,C、D为监测点(如图).已知C、D、B在同一条直线上,且,CD=400米,,.求道路AB段的长;(精确到1米)如果AB段限速为60千米/时,一辆车通过AB段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:,,)
23.(12分)如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.
(1)求证:四边形ABED是菱形;
(2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.
24.边长为6的等边△ABC 中,点D ,E 分别在AC ,BC 边上,DE∥AB,EC =2
如图1,将△DEC 沿射线EC 方向平移,得到△D′E′C′,边D′E′与AC 的交点为M ,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.如图2,将△DEC 绕点C 旋转∠α(0°<α<360°),得到△D ′E′C,连接AD′,BE′.边D′E′的中点为P.
①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;
②连接AP ,当AP 最大时,求AD′的值.(结果保留根号)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
根据题意和函数的图像,可知抛物线的对称轴为直线x=-=1,即b=-4a,变形为4a+b=0,所以(1)正确;
由x=-3时,y>0,可得9a+3b+c>0,可得9a+c>-3c,故(1)正确;
因为抛物线与x轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a﹣3b+1c=7a+11a-5a=14a,由函数的图像开口向下,可知a<0,因此7a﹣3b+1c<0,故(3)不正确;
根据图像可知当x<1时,y随x增大而增大,当x>1时,y随x增大而减小,可知若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1=y3<y1,故(4)不正确;
根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<x1,故(5)正确.
正确的共有3个.
故选B.
点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b1﹣4ac>0时,抛物线与x轴有1个交点;△=b1﹣4ac=0时,抛物线与x轴有1个交点;△=b1﹣4ac<0时,抛物线与x轴没有交点.
2、D
【解析】
A选项:
∠1+∠2=360°-90°×2=180°;
B选项:
∵∠2+∠3=90°,∠3+∠4=90°,
∴∠2=∠4,
∵∠1+∠4=180°,
∴∠1+∠2=180°;
C选项:
∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,
∵∠1+∠EFC=180°,∴∠1+∠2=180°;
D选项:∠1和∠2不一定互补.
故选D.
点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系.
3、A
【解析】
解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.
4、D
【解析】
分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.
详解:﹣2018的绝对值是2018,即.
故选D.
点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.
5、C
【解析】
根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.
【详解】
∵x+2y=5,
∴2x+4y=10,
则2x+4y+1=10+1=1.
故选C.
【点睛】
此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.
6、C
【解析】
直接利用同底数幂的乘除运算法则以及有理数的乘方运算法则分别计算得出答案.
【详解】
解:A、x3-x2,无法计算,故此选项错误;
B、a3÷a3=1,故此选项错误;
C、(-2)2÷(-2)3=-,正确;
D、(-7)4÷(-7)2=72,故此选项错误;
故选C.
【点睛】
此题主要考查了同底数幂的乘除运算以及有理数的乘方运算,正确掌握相关运算法则是解题关键.
7、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将27100用科学记数法表示为:. 2.71×104.
故选:C.
【点睛】
本题考查科学记数法—表示较大的数。
8、D
【解析】
先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.
【详解】
由题意得,2x+y=10,
所以,y=-2x+10,
由三角形的三边关系得,,
解不等式①得,x>2.5,
解不等式②的,x<5,
所以,不等式组的解集是2.5<x<5,
正确反映y与x之间函数关系的图象是D选项图象.
故选:D.
9、C
【解析】
根据一次函数的定义,二次函数的定义对各选项分析判断利用排除法求解.
【详解】
A. y=x是一次函数,故本选项错误;
B. y=是反比例函数,故本选项错误;
C.y=x-2+x2是二次函数,故本选项正确;
D.y= 右边不是整式,不是二次函数,故本选项错误.
故答案选C.
【点睛】
本题考查的知识点是二次函数的定义,解题的关键是熟练的掌握二次函数的定义.
10、A
【解析】
根据锐角三角函数的定义求出即可.
【详解】
解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴ tanA=.
故选A.
【点睛】
本题考查了锐角三角函数的定义,熟记锐角三角函数的定义内容是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x=1.
【解析】
根据解分式方程的步骤解答即可.
【详解】
去分母得:2x=3x﹣1,
解得:x=1,
经检验x=1是分式方程的解,
故答案为x=1.
【点睛】
本题主要考查了解分式方程的步骤,牢牢掌握其步骤就解答此类问题的关键.
12、4或1
【解析】
∵两圆内切,一个圆的半径是6,圆心距是2,
∴另一个圆的半径=6-2=4;
或另一个圆的半径=6+2=1,
故答案为4或1.
【点睛】本题考查了根据两圆位置关系来求圆的半径的方法.注意圆的半径是6,要分大圆和小圆两种情况讨论.
13、
【解析】
由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就
是直线y=8与抛物线两交点的横坐标差的绝对值.
故有,
即,,.
所以两盏警示灯之间的水平距离为:
14、.
【解析】
已知△ABO是等边三角形,通过作高BC,利用等边三角形的性质可以求出OB和OC的长度;由于Rt△OBC中一条直角边和一条斜边的长度已知,根据勾股定理还可求出BC的长度,进而确定点B的坐标;将点B的坐标代入反比例函数的解析式中,即可求出k的值.
【详解】
过点B作BC垂直OA于C,
∵点A的坐标是(2,0),
∴AO=2,
∵△ABO是等边三角形,
∴OC=1,BC=,
∴点B的坐标是
把代入,得
故答案为.
【点睛】
考查待定系数法确定反比例函数的解析式,只需求出反比例函数图象上一点的坐标;
15、丙
【解析】
不低于四星,即四星与五星的和居多为符合题意的餐厅.
【详解】
不低于四星,即比较四星和五星的和,丙最多.
故答案是:丙.
【点睛】
考查了可能性的大小和统计表.解题的关键是将问题转化为比较四星和五星的和的多少.
16、
【解析】
不等式kx+b-(x+a)>0的解集是一次函数y1=kx+b在y2=x+a的图象上方的部分对应的x的取值范围,据此即可解答.
【详解】
解:不等式的解集是.
故答案为:.
【点睛】
本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
三、解答题(共8题,共72分)
17、(1)详见解析;(2)详见解析;(3).
【解析】
(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;
(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;
(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.
(1)证明:连接BD,
在Rt△ABC中,∠ABC=90°,AB=BC,
∴∠A=∠C=45°,
∵AB为圆O的直径,
∴∠ADB=90°,即BD⊥AC,
∴AD=DC=BD=AC,∠CBD=∠C=45°,
∴∠A=∠FBD,
∵DF⊥DG,
∴∠FDG=90°,
∴∠FDB+∠BDG=90°,
∵∠EDA+∠BDG=90°,
∴∠EDA=∠FDB,
在△AED和△BFD中,
∠A=∠FBD,AD=BD,∠EDA=∠FDB,
∴△AED≌△BFD(ASA),
∴AE=BF;
(2)证明:连接EF,BG,
∵△AED≌△BFD,
∴DE=DF,
∵∠EDF=90°,
∴△EDF是等腰直角三角形,
∴∠DEF=45°,
∵∠G=∠A=45°,
∴∠G=∠DEF,
∴GB∥EF;
(3)∵AE=BF,AE=1,
∴BF=1,
在Rt△EBF中,∠EBF=90°,
∴根据勾股定理得:EF2=EB2+BF2,
∵EB=2,BF=1,
∴EF=,
∵△DEF为等腰直角三角形,∠EDF=90°,
∴cos∠DEF=,
∵EF=,
∴DE=×,
∵∠G=∠A,∠GEB=∠AED,
∴△GEB∽△AED,
∴,即GE•ED=AE•EB,
∴•GE=2,即GE=,
则GD=GE+ED=.
18、(1);(2)﹣2<x≤1.
【解析】
(1)根据绝对值、特殊角的三角函数值可以解答本题;
(2)根据解一元一次不等式组的方法可以解答本题.
【详解】
(1)sin45°
=3-+×-5+×
=3-+3-5+1
=7--5;
(2)(2)
由不等式①,得
x>-2,
由不等式②,得
x≤1,
故原不等式组的解集是-2<x≤1.
【点睛】
本题考查解一元一次不等式组、实数的运算、特殊角的三角函数值,解答本题的关键是明确解它们各自的解答方法.
19、(1);(2)P点坐标为, ;(3) 或或或.
【解析】
(1)根据待定系数法把A、C两点坐标代入可求得二次函数的解析式;
(2)由抛物线解析式可求得B点坐标,由B、C坐标可求得直线BC解析式,可设出P点坐标,用P点坐标表示出四边形ABPC的面积,根据二次函数的性质可求得其面积的最大值及P点坐标;
(3)首先设出Q点的坐标,则可表示出QB2、QC2和BC2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三种情况,求解即可.
【详解】
解:(1)∵A(-1,0),在上,
,解得,
∴二次函数的解析式为;
(2)在中,令可得,解得或,
,且,
∴经过、两点的直线为,
设点的坐标为,如图,过点作轴,垂足为,与直线交于点,则,
,
∴当时,四边形的面积最大,此时P点坐标为,
∴四边形的最大面积为;
(3),
∴对称轴为,
∴可设点坐标为,
,,
,,,
为直角三角形,
∴有、和三种情况,
①当时,则有,即,解得或,此时点坐标为或;
②当时,则有,即,解得,此时点坐标为;
③当时,则有,即,解得,此时点坐标为;
综上可知点的坐标为或或或.
【点睛】
本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理、方程思想及分类讨论思想等知识,注意分类讨论思想的应用.
20、(1)作图见解析;(2)作图见解析;5π(平方单位).
【解析】
(1)连接AO、BO、CO并延长到2AO、2BO、2CO长度找到各点的对应点,顺次连接即可.
(2)△A′B′C′的A′、C′绕点B′顺时针旋转90°得到对应点,顺次连接即可.A′B′在旋转过程中扫过的图形面积是一个扇形,根据扇形的面积公式计算即可.
【详解】
解:(1)见图中△A′B′C′
(2)见图中△A″B′C″
扇形的面积(平方单位).
【点睛】
本题主要考查了位似图形及旋转变换作图的方法及扇形的面积公式.
21、(1)证明见解析;(2)
【解析】
试题分析:(1)连接OB,由SSS证明△PAO≌△PBO,得出∠PAO=∠PBO=90°即可;
(2)连接BE,证明△PAC∽△AOC,证出OC是△ABE的中位线,由三角形中位线定理得出BE=2OC,由△DBE∽△DPO可求出.
试题解析:(1)连结OB,则OA=OB.如图1,
∵OP⊥AB,
∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.
在△PAO和△PBO中,
∵,
∴△PAO≌△PBO(SSS),
∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,
∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;
(2)连结BE.如图2,
∵在Rt△AOC中,tan∠BAD=tan∠CAO=,且OC=4,
∴AC=1,则BC=1.在Rt△APO中,∵AC⊥OP,
∴△PAC∽△AOC,∴AC2=OC•PC,解得PC=9,
∴OP=PC+OC=2.在Rt△PBC中,由勾股定理,得PB=,
∵AC=BC,OA=OE,即OC为△ABE的中位线.
∴OC=BE,OC∥BE,∴BE=2OC=3.
∵BE∥OP,∴△DBE∽△DPO,
∴,即,解得BD=.
22、 (1)AB≈1395 米;(2)没有超速.
【解析】
(1)先根据tan∠ADC=2求出AC,再根据∠ABC=35°结合正弦值求解即可(2)根据速度的计算公式求解即可.
【详解】
解:(1)∵AC⊥BC,
∴∠C=90°,
∵tan∠ADC==2,
∵CD=400,
∴AC=800,
在Rt△ABC中,∵∠ABC=35°,AC=800,
∴AB==≈1395 米;
(2)∵AB=1395,
∴该车的速度==55.8km/h<60千米/时,
故没有超速.
【点睛】
此题重点考察学生对三角函数值的实际应用,熟练掌握三角函数值的实际应用是解题的关键.
23、见解析
【解析】
试题分析:(1)先证得四边形ABED是平行四边形,又AB=AD, 邻边相等的平行四边形是菱形;
(2)四边形ABED是菱形,∠ABC=60°,所以∠DEC=60°,AB=ED,又EC=2BE,EC=2DE,可得△DEC是直角三角形.
试题解析:梯形ABCD中,AD∥BC,
∴四边形ABED是平行四边形,
又AB=AD,
∴四边形ABED是菱形;
(2)∵四边形ABED是菱形,∠ABC=60°,
∴∠DEC=60°,AB=ED,
又EC=2BE,
∴EC=2DE,
∴△DEC是直角三角形,
考点:1.菱形的判定;2.直角三角形的性质;3.平行四边形的判定
24、 (1) 当CC'=时,四边形MCND'是菱形,理由见解析;(2)①AD'=BE',理由见解析;②.
【解析】
(1)先判断出四边形MCND'为平行四边形,再由菱形的性质得出CN=CM,即可求出CC';
(2)①分两种情况,利用旋转的性质,即可判断出△ACD≌△BCE'即可得出结论;
②先判断出点A,C,P三点共线,先求出CP,AP,最后用勾股定理即可得出结论.
【详解】
(1)当CC'=时,四边形MCND'是菱形.
理由:由平移的性质得,CD∥C'D',DE∥D'E',
∵△ABC是等边三角形,
∴∠B=∠ACB=60°,
∴∠ACC'=180°-∠ACB=120°,
∵CN是∠ACC'的角平分线,
∴∠D'E'C'=∠ACC'=60°=∠B,
∴∠D'E'C'=∠NCC',
∴D'E'∥CN,
∴四边形MCND'是平行四边形,
∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,
∴△MCE'和△NCC'是等边三角形,
∴MC=CE',NC=CC',
∵E'C'=2,
∵四边形MCND'是菱形,
∴CN=CM,
∴CC'=E'C'=;
(2)①AD'=BE',
理由:当α≠180°时,由旋转的性质得,∠ACD'=∠BCE',
由(1)知,AC=BC,CD'=CE',
∴△ACD'≌△BCE',
∴AD'=BE',
当α=180°时,AD'=AC+CD',BE'=BC+CE',
即:AD'=BE',
综上可知:AD'=BE'.
②如图连接CP,
在△ACP中,由三角形三边关系得,AP<AC+CP,
∴当点A,C,P三点共线时,AP最大,
如图1,
在△D'CE'中,由P为D'E的中点,得AP⊥D'E',PD'=,
∴CP=3,
∴AP=6+3=9,
在Rt△APD'中,由勾股定理得,AD'=.
【点睛】
此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(1)的关键是四边形MCND'是平行四边形,解(2)的关键是判断出点A,C,P三点共线时,AP最大.
山西省右玉教育集团达标名校2021-2022学年中考数学适应性模拟试题含解析: 这是一份山西省右玉教育集团达标名校2021-2022学年中考数学适应性模拟试题含解析,共22页。
湖南省长沙市雅礼集团达标名校2021-2022学年中考数学适应性模拟试题含解析: 这是一份湖南省长沙市雅礼集团达标名校2021-2022学年中考数学适应性模拟试题含解析,共19页。试卷主要包含了答题时请按要求用笔,计算±的值为,不等式组的解集是等内容,欢迎下载使用。
2022年江苏省南通市启东市达标名校中考数学适应性模拟试题含解析: 这是一份2022年江苏省南通市启东市达标名校中考数学适应性模拟试题含解析,共19页。试卷主要包含了二元一次方程组的解是,若一次函数y=,二次函数y=ax2+bx﹣2等内容,欢迎下载使用。