2022届江苏省姜堰市励才实验校中考数学五模试卷含解析
展开1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )
A.16B.14C.12D.10
2.如图,已知,用尺规作图作.第一步的作法以点为圆心,任意长为半径画弧,分别交,于点,第二步的作法是( )
A.以点为圆心,长为半径画弧,与第1步所画的弧相交于点
B.以点为圆心,长为半径画弧,与第1步所画的弧相交于点
C.以点为圆心,长为半径画弧,与第1步所画的弧相交于点
D.以点为圆心,长为半径画弧,与第1步所画的弧相交于点
3.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为( )
A.B.C.D.
4.在一张考卷上,小华写下如下结论,记正确的个数是m,错误的个数是n,你认为
有公共顶点且相等的两个角是对顶角
若,则它们互余
A.4B.C.D.
5.数据”1,2,1,3,1”的众数是( )
A.1 B.1.5 C.1.6 D.3
6.如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于点E,则阴影部分面积为( )
A.πB.πC.6﹣πD.2﹣π
7.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:
则这组数据的中位数与众数分别是( )
A.27,28B.27.5,28C.28,27D.26.5,27
8.已知直线y=ax+b(a≠0)经过第一,二,四象限,那么直线y=bx-a一定不经过( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
9.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是( )
A.B.C.D.
10.如图是某零件的示意图,它的俯视图是( )
A.B.C.D.
11.下列运算结果正确的是( )
A.x2+2x2=3x4B.(﹣2x2)3=8x6
C.x2•(﹣x3)=﹣x5D.2x2÷x2=x
12.对于二次函数,下列说法正确的是( )
A.当x>0,y随x的增大而增大
B.当x=2时,y有最大值-3
C.图像的顶点坐标为(-2,-7)
D.图像与x轴有两个交点
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,点A在反比例函数y=(x>0)上,以OA为边作正方形OABC,边AB交y轴于点P,若PA:PB=1:2,则正方形OABC的面积=_____.
14.的算术平方根为______.
15.如图,在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为 .
16.中,,,高,则的周长为______。
17.如图,在菱形ABCD中,于E,,,则菱形ABCD的面积是______.
18.若点(,1)与(﹣2,b)关于原点对称,则=_______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)先化简,再求值:,其中.
20.(6分)我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有______人,扇形统计图中“了解”部分所对应扇形的圆心角为______°.
(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为_______人.
(3)若从对校园安全知识达到“了解”程度的3个女生A、B、C和2个男生M、N中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A的概率.
21.(6分)如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE=AD,∠EAD=90°,CE交AB于点F,CD=DF.
(1)∠CAD=______度;
(2)求∠CDF的度数;
(3)用等式表示线段CD和CE之间的数量关系,并证明.
22.(8分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.
(1)参加音乐类活动的学生人数为 人,参加球类活动的人数的百分比为
(2)请把图2(条形统计图)补充完整;
(3)该校学生共600人,则参加棋类活动的人数约为 .
(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.
23.(8分)如图,已知点C是∠AOB的边OB上的一点,
求作⊙P,使它经过O、C两点,且圆心在∠AOB的平分线上.
24.(10分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图1和如图2所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:
(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;
(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1600名学生中,考试成绩评为“B”的学生大约有多少名?
(3)如果第一组有两名女生和两名男生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.
25.(10分)如图,在平行四边形ABCD中,连接AC,做△ABC的外接圆⊙O,延长EC交⊙O于点D,连接BD、AD,BC与AD交于点F分,∠ABC=∠ADB。
(1)求证:AE是⊙O的切线;
(2)若AE=12,CD=10,求⊙O的半径。
26.(12分)先化简,再求值:,其中x满足x2-2x-2=0.
27.(12分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y=的表达式;
(2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据切线长定理进行求解即可.
【详解】
∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,
∴AF=AD=2,BD=BE,CE=CF,
∵BE+CE=BC=5,
∴BD+CF=BC=5,
∴△ABC的周长=2+2+5+5=14,
故选B.
【点睛】
本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.
2、D
【解析】
根据作一个角等于已知角的作法即可得出结论.
【详解】
解:用尺规作图作∠AOC=2∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,
第二步的作图痕迹②的作法是以点F为圆心,EF长为半径画弧.
故选:D.
【点睛】
本题考查的是作图-基本作图,熟知作一个角等于已知角的步骤是解答此题的关键.
3、C
【解析】
设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.
【详解】
解:设大马有x匹,小马有y匹,由题意得:,
故选C.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
4、D
【解析】
首先判断出四个结论的错误个数和正确个数,进而可得m、n的值,再计算出即可.
【详解】
解:有公共顶点且相等的两个角是对顶角,错误;
,正确;
,错误;
若,则它们互余,错误;
则,,
,
故选D.
【点睛】
此题主要考查了二次根式的乘除、对顶角、科学记数法、余角和负整数指数幂,关键是正确确定m、n的值.
5、A
【解析】
众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.
【详解】
在这一组数据中1是出现次数最多的,故众数是1.
故选:A.
【点睛】
本题为统计题,考查众数的意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
6、C
【解析】
根据题意作出合适的辅助线,可知阴影部分的面积是△BCD的面积减去△BOE和扇形OEC的面积.
【详解】
由题意可得,
BC=CD=4,∠DCB=90°,
连接OE,则OE=BC,
∴OE∥DC,
∴∠EOB=∠DCB=90°,
∴阴影部分面积为:
=
=6-π,
故选C.
【点睛】
本题考查扇形面积的计算、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
7、A
【解析】
根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,
∴众数是28,
这组数据从小到大排列为:25,26,27,27,28,28,28
∴中位数是27
∴这周最高气温的中位数与众数分别是27,28
故选A.
8、D
【解析】
根据直线y=ax+b(a≠0)经过第一,二,四象限,可以判断a、b的正负,从而可以判断直线y=bx-a经过哪几个象限,不经过哪个象限,本题得以解决.
【详解】
∵直线y=ax+b(a≠0)经过第一,二,四象限,
∴a<0,b>0,
∴直线y=bx-a经过第一、二、三象限,不经过第四象限,
故选D.
【点睛】
本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
9、A
【解析】
利用平行线的性质以及相似三角形的性质一一判断即可.
【详解】
解:∵AB⊥BD,CD⊥BD,EF⊥BD,
∴AB∥CD∥EF
∴△ABE∽△DCE,
∴,故选项B正确,
∵EF∥AB,
∴,
∴,故选项C,D正确,
故选:A.
【点睛】
考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
10、C
【解析】
物体的俯视图,即是从上面看物体得到的结果;根据三视图的定义,从上面看物体可以看到是一个正六边形,里面是一个没有圆心的圆,由此可以确定答案.
【详解】
从上面看是一个正六边形,里面是一个没有圆心的圆.
故答案选C.
【点睛】
本题考查了几何体的三视图,解题的关键是熟练的掌握几何体三视图的定义.
11、C
【解析】
直接利用整式的除法运算以及积的乘方运算法则、合并同类项法则分别化简得出答案.
【详解】
A选项:x2+2x2=3x2,故此选项错误;
B选项:(﹣2x2)3=﹣8x6,故此选项错误;
C选项:x2•(﹣x3)=﹣x5,故此选项正确;
D选项:2x2÷x2=2,故此选项错误.
故选C.
【点睛】
考查了整式的除法运算以及积的乘方运算、合并同类项,正确掌握运算法则是解题关键.
12、B
【解析】
二次函数,
所以二次函数的开口向下,当x<2,y随x的增大而增大,选项A错误;
当x=2时,取得最大值,最大值为-3,选项B正确;
顶点坐标为(2,-3),选项C错误;
顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,
故答案选B.
考点:二次函数的性质.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1.
【解析】
根据题意作出合适的辅助线,然后根据正方形的性质和反比例函数的性质,相似三角形的判定和性质、勾股定理可以求得AB的长.
【详解】
解:由题意可得:OA=AB,设AP=a,则BP=2a,OA=3a,设点A的坐标为(m,),作AE⊥x轴于点E.
∵∠PAO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴=,即=,解得:m=1或m=﹣1(舍去),∴点A的坐标为(1,3),∴OA=,∴正方形OABC的面积=OA2=1.
故答案为1.
【点睛】
本题考查了反比例函数图象点的坐标特征、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
14、
【解析】
首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.
【详解】
∵=2,
∴的算术平方根为.
【点睛】
本题考查了算术平方根,属于简单题,熟悉算数平方根的概念是解题关键.
15、18。
【解析】
根据二次函数的性质,抛物线的对称轴为x=3。
∵A是抛物线与y轴的交点,点B是这条抛物线上的另一 点,且AB∥x轴。
∴A,B关于x=3对称。∴AB=6。
又∵△ABC是等边三角形,∴以AB为边的等边三角形ABC的周长为6×3=18。
16、32或42
【解析】
根据题意,分两种情况讨论:①若∠ACB是锐角,②若∠ACB是钝角,分别画出图形,利用勾股定理,即可求解.
【详解】
分两种情况讨论:
①若∠ACB是锐角,如图1,
∵,,高,
∴在Rt∆ABD中,,
即:,
同理:,
∴的周长=9+5+15+13=42,
②若∠ACB是钝角,如图2,
∵,,高,
∴在Rt∆ABD中,,
即:,
同理:,
∴的周长=9-5+15+13=32,
故答案是:32或42.
【点睛】
本题主要考查勾股定理,根据题意,画出图形,分类进行计算,是解题的关键.
17、
【解析】
根据题意可求AD的长度,即可得CD的长度,根据菱形ABCD的面积=CD×AE,可求菱形ABCD的面积.
【详解】
∵sinD=
∴
∴AD=11
∵四边形ABCD是菱形
∴AD=CD=11
∴菱形ABCD的面积=11×8=96cm1.
故答案为:96cm1.
【点睛】
本题考查了菱形的性质,解直角三角形,熟练运用菱形性质解决问题是本题的关键.
18、.
【解析】
∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴==.故答案为.
考点:关于原点对称的点的坐标.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、,
【解析】
先根据完全平方公式进行约分化简,再代入求值即可.
【详解】
原式=-==,将a=+1代入得,原式===,故答案为.
【点睛】
本题主要考查了求代数式的值、分式的运算,解本题的要点在于正确化简,从而得到答案.
20、(1)60,30;;(2)300;(3)
【解析】
(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;
(2)利用样本估计总体的方法,即可求得答案;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到女生A的情况,再利用概率公式求解即可求得答案.
【详解】
解:(1)∵了解很少的有30人,占50%,
∴接受问卷调查的学生共有:30÷50%=60(人);
∵了解部分的人数为60﹣(15+30+10)=5,
∴扇形统计图中“了解”部分所对应扇形的圆心角为:×360°=30°;
故答案为60,30;
(2)根据题意得:900×=300(人),
则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人,
故答案为300;
(3)画树状图如下:
所有等可能的情况有6种,其中抽到女生A的情况有2种,
所以P(抽到女生A)==.
【点睛】
此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.
21、(1)45;(2)90°;(3)见解析.
【解析】
(1)根据等腰三角形三线合一可得结论;
(2)连接DB,先证明△BAD≌△CAD,得BD=CD=DF,则∠DBA=∠DFB=∠DCA,根据四边形内角和与平角的定义可得∠BAC+∠CDF=180°,所以∠CDF=90°;
(3)证明△EAF≌△DAF,得DF=EF,由②可知,可得结论.
【详解】
(1)解:∵AB=AC,M是BC的中点,
∴AM⊥BC,∠BAD=∠CAD,
∵∠BAC=90°,
∴∠CAD=45°,
故答案为:45
(2)解:如图,连接DB.
∵AB=AC,∠BAC=90°,M是BC的中点,
∴∠BAD=∠CAD=45°.
∴△BAD≌△CAD.
∴∠DBA=∠DCA,BD=CD.
∵CD=DF,
∴BD=DF.
∴∠DBA=∠DFB=∠DCA.
∵∠DFB+∠DFA=180°,
∴∠DCA+∠DFA=180°.
∴∠BAC+∠CDF=180°.
∴∠CDF=90°.
(3).
证明:∵∠EAD=90°,
∴∠EAF=∠DAF=45°.
∵AD=AE,
∴△EAF≌△DAF.
∴DF=EF.
由②可知,.
∴.
【点睛】
此题考查等腰三角形的性质,全等三角形的判定与性质,直角三角形的性质,解题关键在于掌握判定定理及性质.
22、(1)7、30%;(2)补图见解析;(3)105人;(3)
【解析】
试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;
(2)根据(1)中所求数据即可补全条形图;
(3)总人数乘以棋类活动的百分比可得;
(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.
试题解析:解:(1)本次调查的总人数为10÷25%=40(人),∴参加音乐类活动的学生人数为40×17.5%=7人,参加球类活动的人数的百分比为×100%=30%,故答案为7,30%;
(2)补全条形图如下:
(3)该校学生共600人,则参加棋类活动的人数约为600×=105,故答案为105;
(4)画树状图如下:
共有12种情况,选中一男一女的有6种,则P(选中一男一女)==.
点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
23、答案见解析
【解析】
首先作出∠AOB的角平分线,再作出OC的垂直平分线,两线的交点就是圆心P,再以P为圆心,PC长为半径画圆即可.
【详解】
解:如图所示:
.
【点睛】
本题考查基本作图,掌握垂直平分线及角平分线的做法是本题的解题关键..
24、(1)50(2)420(3)P=
【解析】试题分析:(1)首先根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则可求得第五组人数为:50﹣4﹣8﹣20﹣14=4(名);即可补全统计图;
(2)由题意可求得130~145分所占比例,进而求出答案;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名学生刚好是一名女生和一名男生的情况,再利用概率公式求解即可求得答案.
试题解析:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);
则第五组人数为:50﹣4﹣8﹣20﹣14=4(名);
如图:
(2)根据题意得:考试成绩评为“B”的学生大约有×1600=448(名),
答:考试成绩评为“B”的学生大约有448名;
(3)画树状图得:
∵共有16种等可能的结果,所选两名学生刚好是一名女生和一名男生的有8种情况,
∴所选两名学生刚好是一名女生和一名男生的概率为: =.
考点:1、树状图法与列表法求概率的知识,2、直方图与扇形统计图的知识
视频
25、(1)证明见解析;(2).
【解析】
(1)作辅助线,先根据垂径定理得:OA⊥BC,再证明OA⊥AE,则AE是⊙O的切线;
(2)连接OC,证明△ACE∽△DAE,得,计算CE的长,设⊙O的半径为r,根据勾股定理得:r2=62+(r-2)2,解出可得结论.
【详解】
(1)证明:连接OA,交BC于G,
∵∠ABC=∠ADB.∠ABC=∠ADE,
∴∠ADB=∠ADE,
∴,
∴OA⊥BC,
∵四边形ABCE是平行四边形,
∴AE∥BC,
∴OA⊥AE,
∴AE是⊙O的切线;
(2)连接OC,
∵AB=AC=CE,
∴∠CAE=∠E,
∵四边形ABCE是平行四边形,
∴BC∥AE,∠ABC=∠E,
∴∠ADC=∠ABC=∠E,
∴△ACE∽△DAE,,
∵AE=12,CD=10,
∴AE2=DE•CE,
144=(10+CE)CE,
解得:CE=8或-18(舍),
∴AC=CE=8,
∴Rt△AGC中,AG==2,
设⊙O的半径为r,
由勾股定理得:r2=62+(r-2)2,
r=,
则⊙O的半径是.
【点睛】
此题考查了垂径定理,圆周角定理,相似三角形的判定与性质,切线的判定与性质,熟练掌握各自的判定与性质是解本题的关键.
26、
【解析】
分析:先根据分式的混合运算顺序和运算法则化简原式,再由x2-2x-2=0得x2=2x+2=2(x+1),整体代入计算可得.
详解:原式=
=
=,
∵x2-2x-2=0,
∴x2=2x+2=2(x+1),
则原式=.
点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
27、(1) ,y=2x﹣1;(2).
【解析】
(1)利用待定系数法即可解答;
(2)作MD⊥y轴,交y轴于点D,设点M的坐标为(x,2x-1),根据MB=MC,得到CD=BD,再列方程可求得x的值,得到点M的坐标
【详解】
解:(1)把点A(4,3)代入函数得:a=3×4=12,
∴.
∵A(4,3)
∴OA=1,
∵OA=OB,
∴OB=1,
∴点B的坐标为(0,﹣1)
把B(0,﹣1),A(4,3)代入y=kx+b得:
∴y=2x﹣1.
(2)作MD⊥y轴于点D.
∵点M在一次函数y=2x﹣1上,
∴设点M的坐标为(x,2x﹣1)则点D(0,2x-1)
∵MB=MC,
∴CD=BD
∴8-(2x-1)=2x-1+1
解得:x=
∴2x﹣1= ,
∴点M的坐标为 .
【点睛】
本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.
最高气温(℃)
25
26
27
28
天 数
1
1
2
3
江苏省姜堰市励才实验学校2023-2024学年九上数学期末质量跟踪监视模拟试题含答案: 这是一份江苏省姜堰市励才实验学校2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了方程x2-x-1=0的根是,如图,点等内容,欢迎下载使用。
2023-2024学年江苏省姜堰市励才实验学校九年级数学第一学期期末检测模拟试题含答案: 这是一份2023-2024学年江苏省姜堰市励才实验学校九年级数学第一学期期末检测模拟试题含答案,共8页。试卷主要包含了下列事件中,必然事件是等内容,欢迎下载使用。
2023-2024学年江苏省姜堰市励才实验学校数学八上期末联考模拟试题含答案: 这是一份2023-2024学年江苏省姜堰市励才实验学校数学八上期末联考模拟试题含答案,共7页。试卷主要包含了若是一个完全平方式,则的值应是,下列多项式中,能分解因式的是,若,则下列不等式成立的是,9的平方根是等内容,欢迎下载使用。