|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届江苏省姜堰市励才实验校中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    2022届江苏省姜堰市励才实验校中考适应性考试数学试题含解析01
    2022届江苏省姜堰市励才实验校中考适应性考试数学试题含解析02
    2022届江苏省姜堰市励才实验校中考适应性考试数学试题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省姜堰市励才实验校中考适应性考试数学试题含解析

    展开
    这是一份2022届江苏省姜堰市励才实验校中考适应性考试数学试题含解析,共20页。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:
    次序
    第一次
    第二次
    第三次
    第四次
    第五次
    甲命中的环数(环)
    6
    7
    8
    6
    8
    乙命中的环数(环)
    5
    10
    7
    6
    7
    根据以上数据,下列说法正确的是( )
    A.甲的平均成绩大于乙 B.甲、乙成绩的中位数不同
    C.甲、乙成绩的众数相同 D.甲的成绩更稳定
    2.下列等式正确的是(  )
    A.x3﹣x2=x B.a3÷a3=a
    C. D.(﹣7)4÷(﹣7)2=﹣72
    3.如图,矩形是由三个全等矩形拼成的,与,,,,分别交于点,设,,的面积依次为,,,若,则的值为( )

    A.6 B.8 C.10 D.12
    4.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为( )

    A.12 B.16 C.18 D.24
    5.如图,已知,那么下列结论正确的是( )

    A. B. C. D.
    6.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是( )

    A. B. C. D.
    7.某公司有11名员工,他们所在部门及相应每人所创年利润如下表所示,已知这11个数据的中位数为1.
    部门
    人数
    每人所创年利润(单位:万元)

    1
    19

    3
    8

    7


    4
    3
    这11名员工每人所创年利润的众数、平均数分别是  
    A.10,1 B.7,8 C.1,6.1 D.1,6
    8.据统计,2018年全国春节运输人数约为3 000 000 000人,将3 000 000 000用科学记数法表示为(  )
    A.0.3×1010 B.3×109 C.30×108 D.300×107
    9.已知反比例函数y=﹣,当1<x<3时,y的取值范围是(  )
    A.0<y<1 B.1<y<2 C.﹣2<y<﹣1 D.﹣6<y<﹣2
    10.在同一平面直角坐标系中,函数y=x+k与(k为常数,k≠0)的图象大致是(  )
    A. B.
    C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,CD是⊙O直径,AB是弦,若CD⊥AB,∠BCD=25°,则∠AOD=_____°.

    12.如图,身高是1.6m的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m和9m.则旗杆的高度为________m.

    13.如果将“概率”的英文单词 probability中的11个字母分别写在11张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母b的概率是________.
    14.已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_______.
    15.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与
    直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为 .
    16.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=____°.

    17.若m﹣n=4,则2m2﹣4mn+2n2的值为_____.
    三、解答题(共7小题,满分69分)
    18.(10分)对于方程=1,某同学解法如下:
    解:方程两边同乘6,得3x﹣2(x﹣1)=1 ①
    去括号,得3x﹣2x﹣2=1 ②
    合并同类项,得x﹣2=1 ③
    解得x=3 ④
    ∴原方程的解为x=3 ⑤上述解答过程中的错误步骤有   (填序号);请写出正确的解答过程.
    19.(5分)老师布置了一个作业,如下:已知:如图1的对角线的垂直平分线交于点,交于点,交于点.求证:四边形是菱形.

    某同学写出了如图2所示的证明过程,老师说该同学的作业是错误的.请你解答下列问题:能找出该同学错误的原因吗?请你指出来;请你给出本题的正确证明过程.
    20.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米).
    (参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.732,,)

    21.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线DE交AC于点E.

    (1)求证:∠A=∠ADE;
    (2)若AB=25,DE=10,弧DC的长为a,求DE、EC和弧DC围成的部分的面积S.(用含字母a的式子表示).
    22.(10分)如图,以△ABC的边AB为直径的⊙O分别交BC、AC于F、G,且G是的中点,过点G作DE⊥BC,垂足为E,交BA的延长线于点D
    (1)求证:DE是的⊙O切线;
    (2)若AB=6,BG=4,求BE的长;
    (3)若AB=6,CE=1.2,请直接写出AD的长.

    23.(12分)如图,抛物线y=﹣+bx+c交x轴于点A(﹣2,0)和点B,交y轴于点C(0,3),点D是x轴上一动点,连接CD,将线段CD绕点D旋转得到DE,过点E作直线l⊥x轴,垂足为H,过点C作CF⊥l于F,连接DF.
    (1)求抛物线解析式;
    (2)若线段DE是CD绕点D顺时针旋转90°得到,求线段DF的长;
    (3)若线段DE是CD绕点D旋转90°得到,且点E恰好在抛物线上,请求出点E的坐标.

    24.(14分)如图,在▱ABCD中,以点4为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并廷长交BC于点E,连接EF
    (1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;
    (2)若AB=2,AE=2,求∠BAD的大小.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    根据已知条件中的数据计算出甲、乙的方差,中位数和众数后,再进行比较即可.
    【详解】
    把甲命中的环数按大小顺序排列为:6,6,7,8,8,故中位数为7;
    把乙命中的环数按大小顺序排列为:5,6,7,7,10,故中位数为7;
    ∴甲、乙成绩的中位数相同,故选项B错误;
    根据表格中数据可知,甲的众数是8环,乙的众数是7环,
    ∴甲、乙成绩的众数不同,故选项C错误;
    甲命中的环数的平均数为:(环),
    乙命中的环数的平均数为:(环),
    ∴甲的平均数等于乙的平均数,故选项A错误;
    甲的方差=[(6−7)2+(7−7)2+(8−7)2+(6−7)2+(8−7)2]=0.8;
    乙的方差=[(5−7)2+(10−7)2+(7−7)2+(6−7)2+(7−7)2]=2.8,
    因为2.8>0.8,
    所以甲的稳定性大,故选项D正确.
    故选D.
    【点睛】
    本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.同时还考查了众数的中位数的求法.
    2、C
    【解析】
    直接利用同底数幂的乘除运算法则以及有理数的乘方运算法则分别计算得出答案.
    【详解】
    解:A、x3-x2,无法计算,故此选项错误;
    B、a3÷a3=1,故此选项错误;
    C、(-2)2÷(-2)3=-,正确;
    D、(-7)4÷(-7)2=72,故此选项错误;
    故选C.
    【点睛】
    此题主要考查了同底数幂的乘除运算以及有理数的乘方运算,正确掌握相关运算法则是解题关键.
    3、B
    【解析】
    由条件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ与△DKM的相似比为,△BPQ与△CNH相似比为,由相似三角形的性质,就可以求出,从而可以求出.
    【详解】
    ∵矩形AEHC是由三个全等矩形拼成的,
    ∴AB=BD=CD,AE∥BF∥DG∥CH,
    ∴∠BQP=∠DMK=∠CHN,
    ∴△ABQ∽△ADM,△ABQ∽△ACH,
    ∴,,
    ∵EF=FG= BD=CD,AC∥EH,
    ∴四边形BEFD、四边形DFGC是平行四边形,
    ∴BE∥DF∥CG,
    ∴∠BPQ=∠DKM=∠CNH,
    又∵∠BQP=∠DMK=∠CHN,
    ∴△BPQ∽△DKM,△BPQ∽△CNH,
    ∴,,
    即,,

    ∴,即,
    解得:,
    ∴,
    故选:B.
    【点睛】
    本题考查了矩形的性质,平行四边形的判定和性质,相似三角形的判定与性质,三角形的面积公式,得出S2=4S1,S3=9S1是解题关键.
    4、A
    【解析】
    解:∵四边形ABCD为矩形,
    ∴AD=BC=10,AB=CD=8,
    ∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,
    ∴AF=AD=10,EF=DE,
    在Rt△ABF中,
    ∵BF==6,
    ∴CF=BC-BF=10-6=4,
    ∴△CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.
    故选A.
    5、A
    【解析】
    已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.
    【详解】
    ∵AB∥CD∥EF,
    ∴.
    故选A.
    【点睛】
    本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.
    6、C
    【解析】
    从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,
    故选C.
    7、D
    【解析】
    根据中位数的定义即可求出x的值,然后根据众数的定义和平均数公式计算即可.
    【详解】
    解:这11个数据的中位数是第8个数据,且中位数为1,

    则这11个数据为3、3、3、3、1、1、1、1、1、1、1、8、8、8、19,
    所以这组数据的众数为1万元,平均数为万元.
    故选:.
    【点睛】
    此题考查的是中位数、众数和平均数,掌握中位数的定义、众数的定义和平均数公式是解决此题的关键.
    8、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.
    【详解】
    解:根据科学计数法的定义可得,3 000 000 000=3×109,故选择B.
    【点睛】
    本题考查了科学计数法的定义,确定n的值是易错点.
    9、D
    【解析】
    根据反比例函数的性质可以求得y的取值范围,从而可以解答本题.
    【详解】
    解:∵反比例函数y=﹣,∴在每个象限内,y随x的增大而增大,∴当1<x<3时,y的取值范围是﹣6<y<﹣1.
    故选D.
    【点睛】
    本题考查了反比例函数的性质,解答本题的关键是明确题意,求出相应的y的取值范围,利用反比例函数的性质解答.
    10、B
    【解析】
    选项A中,由一次函数y=x+k的图象知k<0,由反比例函数y=的图象知k>0,矛盾,所以选项A错误;选项B中,由一次函数y=x+k的图象知k>0,由反比例函数y=的图象知k>0,正确,所以选项B正确;由一次函数y=x+k的图象知,函数图象从左到右上升,所以选项C、D错误.
    故选B.

    二、填空题(共7小题,每小题3分,满分21分)
    11、50
    【解析】
    由CD是⊙O的直径,弦AB⊥CD,根据垂径定理的即可求得

    =,又由圆周角定理,可得∠AOD=50°.
    【详解】
    ∵CD是⊙O的直径,弦AB⊥CD,
    ∴=,
    ∵∠BCD=25°=,
    ∴∠AOD=2∠BCD=50°,
    故答案为50
    【点睛】
    本题考查角度的求解,解题的关键是利用垂径定理.
    12、1
    【解析】
    试题分析:利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可.
    解:∵同一时刻物高与影长成正比例.
    设旗杆的高是xm.
    ∴1.6:1.2=x:9
    ∴x=1.
    即旗杆的高是1米.
    故答案为1.
    考点:相似三角形的应用.
    13、
    【解析】
    分析:让英文单词probability中字母b的个数除以字母的总个数即为所求的概率.
    详解:∵英文单词probability中,一共有11个字母,其中字母b有2个,∴任取一张,那么取到字母b的概率为.
    故答案为.
    点睛:本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.
    14、16或1
    【解析】
    题目给出等腰三角形有两条边长为5和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
    【详解】
    (1)当三角形的三边是5,5,6时,则周长是16;
    (2)当三角形的三边是5,6,6时,则三角形的周长是1;
    故它的周长是16或1.
    故答案为:16或1.
    【点睛】
    本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
    15、2
    【解析】
    解:∵OA的中点是D,点A的坐标为(﹣6,4),
    ∴D(﹣1,2),
    ∵双曲线y=经过点D,
    ∴k=﹣1×2=﹣6,
    ∴△BOC的面积=|k|=1.
    又∵△AOB的面积=×6×4=12,
    ∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣1=2.
    16、115°
    【解析】
    根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.
    【详解】
    解:连接OC,如右图所示,
    由题意可得,∠OCP=90°,∠P=40°,
    ∴∠COB=50°,
    ∵OC=OB,
    ∴∠OCB=∠OBC=65°,
    ∵四边形ABCD是圆内接四边形,
    ∴∠D+∠ABC=180°,
    ∴∠D=115°,
    故答案为:115°.
    【点睛】
    本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.
    17、1
    【解析】解:∵2m2﹣4mn+2n2=2(m﹣n)2,∴当m﹣n=4时,原式=2×42=1.故答案为:1.

    三、解答题(共7小题,满分69分)
    18、(1)错误步骤在第①②步.(2)x=4.
    【解析】
    (1)第①步在去分母的时候,两边同乘以6,但是方程右边没有乘,另外在去括号时没有注意到符号的变化,所以出现错误;
    (2)注重改正错误,按以上步骤进行即可.
    【详解】
    解:(1)方程两边同乘6,得3x﹣2(x﹣1)=6 ①
    去括号,得3x﹣2x+2=6 ②
    ∴错误步骤在第①②步.
    (2)方程两边同乘6,得3x﹣2(x﹣1)=6
    去括号,得3x﹣2x+2=6
    合并同类项,得x+2=6
    解得x=4
    ∴原方程的解为x=4
    【点睛】
    本题考查的解一元一次方程,注意去分母与去括号中常见错误,符号也经常是出现错误的原因.
    19、(1)能,见解析;(2)见解析.
    【解析】
    (1)直接利用菱形的判定方法分析得出答案;
    (2)直接利用全等三角形的判定与性质得出EO=FO,进而得出答案.
    【详解】
    解:(1)能;该同学错在AC和EF并不是互相平分的,EF垂直平分AC,但未证明AC垂直平分EF,
    需要通过证明得出;
    (2)证明: ∵四边形ABCD是平行四边形,
    ∴AD∥BC.
    ∴∠FAC=∠ECA.
    ∵EF是AC的垂直平分线,
    ∴OA=OC.
    ∵在△AOF与△COE中,
    ,
    ∴△AOF≌△COE(ASA).
    ∴EO=FO.
    ∴AC垂直平分EF.
    ∴EF与AC互相垂直平分.
    ∴四边形AECF是菱形.
    【点睛】
    本题主要考查了平行四边形的性质,菱形的判定,全等三角形的判定与性质,正确得出全等三角形是解题关键.
    20、3.05米.
    【解析】
    延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.
    【详解】
    延长FE交CB的延长线于M,过A作AG⊥FM于G,
    在Rt△ABC中,tan∠ACB=,
    ∴AB=BC•tan75°=0.60×3.732=2.2392,
    ∴GM=AB=2.2392,
    在Rt△AGF中,∵∠FAG=∠FHD=60°,sin∠FAG=,
    ∴sin60°=,
    ∴FG=2.165,
    ∴DM=FG+GM﹣DF≈3.05米.
    答:篮框D到地面的距离是3.05米.

    考点:解直角三角形的应用.
    21、(1)见解析;(2)75﹣a.
    【解析】
    (1)连接CD,求出∠ADC=90°,根据切线长定理求出DE=EC,即可求出答案;
    (2)连接CD、OD、OE,求出扇形DOC的面积,分别求出△ODE和△OCE的面积,即可求出答案
    【详解】
    (1)证明:连接DC,

    ∵BC是⊙O直径,
    ∴∠BDC=90°,
    ∴∠ADC=90°,
    ∵∠C=90°,BC为直径,
    ∴AC切⊙O于C,
    ∵过点D作⊙O的切线DE交AC于点E,
    ∴DE=CE,
    ∴∠EDC=∠ECD,
    ∵∠ACB=∠ADC=90°,
    ∴∠A+∠ACD=90°,∠ADE+∠EDC=90°,
    ∴∠A=∠ADE;
    (2)解:连接CD、OD、OE,

    ∵DE=10,DE=CE,
    ∴CE=10,
    ∵∠A=∠ADE,
    ∴AE=DE=10,
    ∴AC=20,
    ∵∠ACB=90°,AB=25,
    ∴由勾股定理得:BC===15,
    ∴CO=OD=,
    ∵的长度是a,
    ∴扇形DOC的面积是×a×=a,
    ∴DE、EC和弧DC围成的部分的面积S=××10+×10﹣a=75﹣a.
    【点睛】
    本题考查了圆周角定理,切线的性质,切线长定理,等腰三角形的性质和判定,勾股定理,扇形的面积,三角形的面积等知识点,能综合运用知识点进行推理和计算是解此题的关键.
    22、(1)证明见解析;(1);(3)1.
    【解析】
    (1)要证明DE是的⊙O切线,证明OG⊥DE即可;
    (1)先证明△GBA∽△EBG,即可得出=,根据已知条件即可求出BE;
    (3)先证明△AGB≌△CGB,得出BC=AB=6,BE=4.8再根据OG∥BE得出=,即可计算出AD.
    【详解】
    证明:(1)如图,连接OG,GB,

    ∵G是弧AF的中点,
    ∴∠GBF=∠GBA,
    ∵OB=OG,
    ∴∠OBG=∠OGB,
    ∴∠GBF=∠OGB,
    ∴OG∥BC,
    ∴∠OGD=∠GEB,
    ∵DE⊥CB,
    ∴∠GEB=90°,
    ∴∠OGD=90°,
    即OG⊥DE且G为半径外端,
    ∴DE为⊙O切线;
    (1)∵AB为⊙O直径,
    ∴∠AGB=90°,
    ∴∠AGB=∠GEB,且∠GBA=∠GBE,
    ∴△GBA∽△EBG,
    ∴,
    ∴;
    (3)AD=1,根据SAS可知△AGB≌△CGB,
    则BC=AB=6,
    ∴BE=4.8,
    ∵OG∥BE,
    ∴,即,
    解得:AD=1.
    【点睛】
    本题考查了相似三角形与全等三角形的判定与性质与切线的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质与切线的性质.
    23、 (1) 抛物线解析式为y=﹣;(2) DF=3;(3) 点E的坐标为E1(4,1)或E2(﹣ ,﹣)或E3( ,﹣)或E4(,﹣).
    【解析】
    (1)将点A、C坐标代入抛物线解析式求解可得;
    (2)证△COD≌△DHE得DH=OC,由CF⊥FH知四边形OHFC是矩形,据此可得FH=OC=DH=3,利用勾股定理即可得出答案;
    (3)设点D的坐标为(t,0),由(1)知△COD≌△DHE得DH=OC、EH=OD,再分CD绕点D顺时针旋转和逆时针旋转两种情况,表示出点E的坐标,代入抛物线求得t的值,从而得出答案.
    【详解】
    (1)∵抛物线y=﹣+bx+c交x轴于点A(﹣2,0)、C(0,3),∴,解得:,∴抛物线解析式为y=﹣+x+3;
    (2)如图1.
    ∵∠CDE=90°,∠COD=∠DHE=90°,∴∠OCD+∠ODC=∠HDE+∠ODC,∴∠OCD=∠HDE.
    又∵DC=DE,∴△COD≌△DHE,∴DH=OC.
    又∵CF⊥FH,∴四边形OHFC是矩形,∴FH=OC=DH=3,∴DF=3;

    (3)如图2,设点D的坐标为(t,0).
    ∵点E恰好在抛物线上,且EH=OD,∠DHE=90°,∴由(2)知,△COD≌△DHE,∴DH=OC,EH=OD,分两种情况讨论:
    ①当CD绕点D顺时针旋转时,点E的坐标为(t+3,t),代入抛物线y=﹣+x+3,得:﹣(t+3)2+(t+3)+3=t,解得:t=1或t=﹣,所以点E的坐标E1(4,1)或E2(﹣,﹣);
    ②当CD绕点D逆时针旋转时,点E的坐标为(t﹣3,﹣t),代入抛物线y=﹣+x+3得:﹣(t﹣3)2+(t﹣3)+3=﹣t,解得:t=或t=.故点E的坐标E3(,﹣)或E4(,﹣);

    综上所述:点E的坐标为E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).
    【点睛】
    本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、全等三角形的判定与性质、矩形的判定与性质及分类讨论思想的运用.
    24、 (1)见解析;(2) 60°.
    【解析】
    (1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明;
    (2)连结BF,交AE于G.根据菱形的性质得出AB=2,AG=AE=,∠BAF=2∠BAE,AE⊥BF.然后解直角△ABG,求出∠BAG=30°,那么∠BAF=2∠BAE=60°.
    【详解】
    解:(1)在△AEB和△AEF中,

    ∴△AEB≌△AEF,
    ∴∠EAB=∠EAF,
    ∵AD∥BC,
    ∴∠EAF=∠AEB=∠EAB,
    ∴BE=AB=AF.
    ∵AF∥BE,
    ∴四边形ABEF是平行四边形,
    ∵AB=BE,
    ∴四边形ABEF是菱形;
    (2)连结BF,交AE于G.
    ∵AB=AF=2,
    ∴GA=AE=×2=,
    在Rt△AGB中,cos∠BAE==,
    ∴∠BAG=30°,
    ∴∠BAF=2∠BAG=60°,
    【点睛】
    本题考查了平行四边形的性质与菱形的判定与性质,解题的关键是熟练的掌握平行四边形的性质与菱形的判定与性质.

    相关试卷

    江苏省姜堰市励才实验学校2023-2024学年九上数学期末质量跟踪监视模拟试题含答案: 这是一份江苏省姜堰市励才实验学校2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了方程x2-x-1=0的根是,如图,点等内容,欢迎下载使用。

    2023-2024学年江苏省姜堰市励才实验学校九年级数学第一学期期末检测模拟试题含答案: 这是一份2023-2024学年江苏省姜堰市励才实验学校九年级数学第一学期期末检测模拟试题含答案,共8页。试卷主要包含了下列事件中,必然事件是等内容,欢迎下载使用。

    2023-2024学年江苏省姜堰市励才实验学校数学八上期末联考模拟试题含答案: 这是一份2023-2024学年江苏省姜堰市励才实验学校数学八上期末联考模拟试题含答案,共7页。试卷主要包含了若是一个完全平方式,则的值应是,下列多项式中,能分解因式的是,若,则下列不等式成立的是,9的平方根是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map