2022届湖南省浏阳市部分校中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列四个几何体中,主视图与左视图相同的几何体有( )
A.1个 B.2个 C.3个 D.4个
2.第 24 届冬奥会将于 2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是( )
A. B. C. D.
3.在实数π,0,,﹣4中,最大的是( )
A.π B.0 C. D.﹣4
4.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为( )
A. B. C. D.
5.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是( )
A.2 B.3 C.4 D.5
6.如图1所示,甲、乙两车沿直路同向行驶,车速分别为20 m/s和v(m/s),起初甲车在乙 车前a (m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶.设x(s)后两车相距y (m),y与x的函数关系如图2所示.有以下结论:
①图1中a的值为500;
②乙车的速度为35 m/s;
③图1中线段EF应表示为;
④图2中函数图象与x轴交点的横坐标为1.
其中所有的正确结论是( )
A.①④ B.②③
C.①②④ D.①③④
7.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=( )
A. B. C. D.
8.如图,一次函数y=x﹣1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为( )
A.(0,1) B.(0,2) C. D.(0,3)
9.下列运算正确的是( )
A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2•x﹣3=x﹣1
10.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是( )
班级
平均数
中位数
众数
方差
八(1)班
94
93
94
12
八(2)班
95
95.5
93
8.4
A.八(2)班的总分高于八(1)班
B.八(2)班的成绩比八(1)班稳定
C.两个班的最高分在八(2)班
D.八(2)班的成绩集中在中上游
二、填空题(共7小题,每小题3分,满分21分)
11.若3,a,4,5的众数是4,则这组数据的平均数是_____.
12.抛掷一枚均匀的硬币,前3次都正面朝上,第4次正面朝上的概率为________.
13.已知:如图,AB是⊙O的直径,弦EF⊥AB于点D,如果EF=8,AD=2,则⊙O半径的长是_____.
14.已知一粒米的质量是1.111121千克,这个数字用科学记数法表示为__________.
15.请写出一个比2大且比4小的无理数:________.
16.2017年12月31日晚,郑东新区如意湖文化广场举行了“文化跨年夜、出彩郑州人”的跨年庆祝活动,大学生小明和小刚都各自前往观看了演出,而且他们两人前往时选择了以下三种交通工具中的一种:共享单车、公交、地铁,则他们两人选择同一种交通工具前往观看演出的概率为_____.
17.把一张长方形纸条按如图所示折叠后,若∠AOB′=70°,则∠B′OG=_____.
三、解答题(共7小题,满分69分)
18.(10分)某校为表彰在“书香校园”活动中表现积极的同学,决定购买笔记本和钢笔作为奖品.已知5个笔记本、2支钢笔共需要100元;4个笔记本、7支钢笔共需要161元
(1)笔记本和钢笔的单价各多少元?
(2)恰好“五一”,商店举行“优惠促销”活动,具体办法如下:笔记本9折优惠;钢笔10支以上超出部分8折优惠若买x个笔记本需要y1元,买x支钢笔需要y2元;求y1、y2关于x的函数解析式;
(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.
19.(5分)已知,△ABC中,∠A=68°,以AB为直径的⊙O与AC,BC的交点分别为D,E
(Ⅰ)如图①,求∠CED的大小;
(Ⅱ)如图②,当DE=BE时,求∠C的大小.
20.(8分)如图,抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3).
(1)求该抛物线的解析式;
(2)在抛物线的对称轴上是否存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形?若存在,试求出点Q的坐标;若不存在,请说明理由.
21.(10分)如图1,点为正的边上一点(不与点重合),点分别在边上,且.
(1)求证:;
(2)设,的面积为,的面积为,求(用含的式子表示);
(3)如图2,若点为边的中点,求证: .
图1 图2
22.(10分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
摸球的次数n
100
200
300
500
800
1000
3000
摸到白球的次数m
65
124
178
302
481
599
1803
摸到白球的频率
0.65
0.62
0.593
0.604
0.601
0.599
0.601
(1)请估计:当n很大时,摸到白球的频率将会接近 ;(精确到0.1)假如你摸一次,你摸到白球的概率P(白球)= ;试估算盒子里黑、白两种颜色的球各有多少只?
23.(12分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.
(1)请用列表或画树状图的方法表示出上述试验所有可能结果;
(2)求一次打开锁的概率.
24.(14分)解方程:1+
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
解:①正方体的主视图与左视图都是正方形;
②球的主视图与左视图都是圆;
③圆锥主视图与左视图都是三角形;
④圆柱的主视图和左视图都是长方形;
故选D.
2、B
【解析】
先找出滑雪项目图案的张数,结合5 张形状、大小、质地均相同的卡片,再根据概率公式即可求解.
【详解】
∵有 5 张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,
∴从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是.
故选B.
【点睛】
本题考查了简单事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.
3、C
【解析】
根据实数的大小比较即可得到答案.
【详解】
解:∵16<17<25,∴4<<5,∴>π>0>-4,故最大的是,故答案选C.
【点睛】
本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.
4、B
【解析】
阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.
【详解】
由旋转可知AD=BD,
∵∠ACB=90°,AC=2,
∴CD=BD,
∵CB=CD,
∴△BCD是等边三角形,
∴∠BCD=∠CBD=60°,
∴BC=AC=2,
∴阴影部分的面积=2×2÷2−=2−.
故答案选:B.
【点睛】
本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算.
5、A
【解析】
试题分析:已知AB是⊙O的弦,半径OC⊥AB于点D,由垂径定理可得AD=BD=4,在Rt△ADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A.
考点:垂径定理;勾股定理.
6、A
【解析】
分析:①根据图象2得出结论; ②根据(75,125)可知:75秒时,两车的距离为125m,列方程可得结论; ③根据图1,线段的和与差可表示EF的长;④利用待定系数法求直线的解析式,令y=0可得结论.
详解:①y是两车的距离,所以根据图2可知:图1中a的值为500,此选项正确;②由题意得:75×20+500-75y=125,v=25,则乙车的速度为25m/s,故此选项不正确;③图1中:EF=a+20x-vx=500+20x-25x=500-5x.故此选项不正确;④设图2的解析式为:y=kx+b,把(0,500)和(75,125)代入得: ,解得 ,∴y=-5x+500,
当y=0时,-5x+500=0,x=1,即图2中函数图象与x轴交点的横坐标为1,此选项正确;其中所有的正确结论是①④;故选A.
点睛:本题考查了一次函数的应用,根据函数图象,读懂题目信息,理解两车间的距离与时间的关系是解题的关键.
7、C
【解析】
由正方形的性质知DG=CG-CD=2、AD∥GF,据此证△ADM∽△FGM得 , 求出GM的长,再利用勾股定理求解可得答案.
【详解】
解:∵四边形ABCD和四边形CEFG是正方形,
∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,
∴DG=CG-CD=2,AD∥GF,
则△ADM∽△FGM,
∴,即 ,
解得:GM= ,
∴FM= = = ,
故选:C.
【点睛】
本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握正方形的性质、相似三角形的判定与性质及勾股定理等知识点.
8、B
【解析】
根据方程组求出点A坐标,设C(0,m),根据AC=BC,列出方程即可解决问题.
【详解】
由,解得 或,
∴A(2,1),B(1,0),
设C(0,m),
∵BC=AC,
∴AC2=BC2,
即4+(m-1)2=1+m2,
∴m=2,
故答案为(0,2).
【点睛】
本题考查了反比例函数与一次函数的交点坐标问题、勾股定理、方程组等知识,解题的关键是会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题.
9、D
【解析】
分析:根据合并同类项法则,同底数幂相除,积的乘方的性质,同底数幂相乘的性质,逐一判断即可.
详解:根据合并同类项法则,可知x3+x3=2x3,故不正确;
根据同底数幂相除,底数不变指数相加,可知a6÷a2=a4,故不正确;
根据积的乘方,等于各个因式分别乘方,可知(-3a3)2=9a6,故不正确;
根据同底数幂相乘,底数不变指数相加,可得x2•x﹣3=x﹣1,故正确.
故选D.
点睛:此题主要考查了整式的相关运算,是一道综合性题目,熟练应用整式的相关性质和运算法则是解题关键.
10、C
【解析】
直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案.
【详解】
A选项:八(2)班的平均分高于八(1)班且人数相同,所以八(2)班的总分高于八(1)班,正确;
B选项:八(2)班的方差比八(1)班小,所以八(2)班的成绩比八(1)班稳定,正确;
C选项:两个班的最高分无法判断出现在哪个班,错误;
D选项:八(2)班的中位数高于八(1)班,所以八(2)班的成绩集中在中上游,正确;
故选C.
【点睛】
考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.
二、填空题(共7小题,每小题3分,满分21分)
11、4
【解析】
试题分析:先根据众数的定义求出a的值,再根据平均数的定义列出算式,再进行计算即可.
试题解析:∵3,a,4,5的众数是4,
∴a=4,
∴这组数据的平均数是(3+4+4+5)÷4=4.
考点:1.算术平均数;2.众数.
12、
【解析】
根据概率的计算方法求解即可.
【详解】
∵第4次抛掷一枚均匀的硬币时,正面和反面朝上的概率相等,
∴第4次正面朝上的概率为.
故答案为:.
【点睛】
此题考查了概率公式的计算方法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
13、1.
【解析】
试题解析:连接OE,如下图所示,
则:OE=OA=R,
∵AB是⊙O的直径,弦EF⊥AB,
∴ED=DF=4,
∵OD=OA-AD,
∴OD=R-2,
在Rt△ODE中,由勾股定理可得:
OE2=OD2+ED2,
∴R2=(R-2)2+42,
∴R=1.
考点:1.垂径定理;2.解直角三角形.
14、
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.
【详解】
解:1.111121=2.1×11-2.
故答案为:2.1×11-2.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×11-n,其中1≤|a|<11,n由原数左边起第一个不为零的数字前面的1的个数所决定.
15、(或)
【解析】
利用完全平方数和算术平方根对无理数的大小进行估算,然后找出无理数即可
【详解】
设无理数为,,所以x的取值在4~16之间都可,故可填
【点睛】
本题考查估算无理数的大小,能够判断出中间数的取值范围是解题关键
16、
【解析】
首先根据题意画树状图,然后根据树状图即可求得所有等可能的结果,最后用概率公式求解即可求得答案.
【详解】
树状图如图所示,
∴一共有9种等可能的结果;
根据树状图知,两人选择同一种交通工具前往观看演出的有3种情况,
∴选择同一种交通工具前往观看演出的概率:,
故答案为.
【点睛】
此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
17、55°
【解析】
由翻折性质得,∠BOG=∠B′OG,根据邻补角定义可得.
【详解】
解:由翻折性质得,∠BOG=∠B′OG,
∵∠AOB′+∠BOG+∠B′OG=180°,
∴∠B′OG=(180°﹣∠AOB′)=(180°﹣70°)=55°.
故答案为55°.
【点睛】
考核知识点:补角,折叠.
三、解答题(共7小题,满分69分)
18、(1)笔记本单价为14元,钢笔单价为15元;(2)y1=14×0.9x=12.6x,y2=;(3)当购买奖品数量超过2时,买钢笔省钱;当购买奖品数量少于2时,买笔记本省钱;当购买奖品数量等于2时,买两种奖品花费一样.
【解析】
(1)设每个文具盒z元,每支钢笔y元,可列方程组得解之得
答:每个文具盒14元,每支钢笔15元.
(2)由题意知,y1关于x的函数关系式是y1=14×90%x,即y1=12.6x.
买钢笔10支以下(含10支)没有优惠.故此时的函数关系式为y2=15x:
当买10支以上时,超出的部分有优惠,故此时的函数关系式为y2=15×10+15×80%(x-10),
即y2=12x+1.
(3)因为x>10,所以y2=12x+1.当y1<y2,即12.6x<12x+1时,解得x<2;
当y1=y2,即12.6x=12x+1时,解得x=2;
当y1>y2,即12.6x>12x+1时,解得x>2.
综上所述,当购买奖品超过10件但少于2件时,买文具盒省钱;
当购买奖品2件时,买文具盒和买钢笔钱数相等;
当购买奖品超过2件时,买钢笔省钱.
19、(Ⅰ)68°(Ⅱ)56°
【解析】
(1)圆内接四边形的一个外角等于它的内对角,利用圆内接四边形的性质证明∠CED=∠A即可,(2)连接AE,在Rt△AEC中,先根据同圆中,相等的弦所对弧相等,再根据同圆中,相等的弧所对圆周角相等, 求出∠EAC,最后根据直径所对圆周是直角,利用直角三角形两锐角互余即可解决问题.
【详解】
(Ⅰ)∵四边形ABED 圆内接四边形,
∴∠A+∠DEB=180°,
∵∠CED+∠DEB=180°,
∴∠CED=∠A,
∵∠A=68°,
∴∠CED=68°.
(Ⅱ)连接AE.
∵DE=BD,
∴,
∴∠DAE=∠EAB=∠CAB=34°,
∵AB是直径,
∴∠AEB=90°,
∴∠AEC=90°,
∴∠C=90°﹣∠DAE=90°﹣34°=56°
【点睛】
本题主要考查圆周角定理、直径的性质、圆内接四边形的性质等知识,解决本题的关键是灵活运用所学知识解决问题.
20、 (1) y=﹣x2+2x+3;(2)见解析.
【解析】
(1)将B(3,0),C(0,3)代入抛物线y=ax2+2x+c,可以求得抛物线的解析式;
(2) 抛物线的对称轴为直线x=1,设点Q的坐标为(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC为斜边,AQ为斜边,CQ时斜边三种情况求解即可.
【详解】
解:(1)∵抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3),
∴,得,
∴该抛物线的解析式为y=﹣x2+2x+3;
(2)在抛物线的对称轴上存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形,
理由:∵抛物线y=﹣x2+2x+3=﹣(x﹣1)2+4,点B(3,0),点C(0,3),
∴抛物线的对称轴为直线x=1,
∴点A的坐标为(﹣1,0),
设点Q的坐标为(1,t),则
AC2=OC2+OA2=32+12=10,
AQ2=22+t2=4+t2,
CQ2=12+(3﹣t)2=t2﹣6t+10,
当AC为斜边时,
10=4+t2+t2﹣6t+10,
解得,t1=1或t2=2,
∴点Q的坐标为(1,1)或(1,2),
当AQ为斜边时,
4+t2=10+t2﹣6t+10,
解得,t=,
∴点Q的坐标为(1,),
当CQ时斜边时,
t2﹣6t+10=4+t2+10,
解得,t=,
∴点Q的坐标为(1,﹣),
由上可得,当点Q的坐标是(1,1)、(1,2)、(1,)或(1,﹣)时,使得以A、C、Q为顶点的三角形为直角三角形.
【点睛】
本题考查了待定系数法求函数解析式,二次函数的图像与性质,勾股定理及分类讨论的数学思想,熟练掌握待定系数法是解(1)的关键,分三种情况讨论是解(2)的关键.
21、(1)详见解析;(1)详见解析;(3)详见解析.
【解析】
(1)根据两角对应相等的两个三角形相似即可判断;
(1)如图1中,分别过E,F作EG⊥BC于G,FH⊥BC于H,S1=•BD•EG=•BD•EG=•a•BE•sin60°=•a•BE,S1=•CD•FH=•b•CF,可得S1•S1=ab•BE•CF,由(1)得△BDE∽△CFD,,即BE•FC=BD•CD=ab,即可推出S1•S1=a1b1;
(3)想办法证明△DFE∽△CFD,推出,即DF1=EF•FC;
【详解】
(1)证明:如图1中,
在△BDE中,∠BDE+∠DEB+∠B=180°,又∠BDE+∠EDF+∠FDC=180°,
∴∠BDE+∠DEB+∠B=∠BDE+∠EDF+∠FDC,
∵∠EDF=∠B,
∴∠DEB=∠FDC,
又∠B=∠C,
∴△BDE∽△CFD.
(1)如图1中,分别过E,F作EG⊥BC于G,FH⊥BC于H,
S1=•BD•EG=•BD•EG=•a•BE•sin60°=•a•BE,S1=•CD•FH=•b•CF,
∴S1•S1=ab•BE•CF
由(1)得△BDE∽△CFD,
∴,即BE•FC=BD•CD=ab,
∴S1•S1=a1b1.
(3)由(1)得△BDE∽△CFD,
∴,
又BD=CD,
∴,
又∠EDF=∠C=60°,
∴△DFE∽△CFD,
∴,即DF1=EF•FC.
【点睛】
本题考查了相似形综合题、等边三角形的性质、相似三角形的判定和性质、三角形的面积等知识,解题的关键是正确寻找相似三角形的相似的条件.
22、(1)0.6;(2)0.6;(3)白球有24只,黑球有16只.
【解析】
试题分析:通过题意和表格,可知摸到白球的概率都接近与0.6,因此摸到白球的概率估计值为0.6.
23、(1)详见解析(2)
【解析】
设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为、,其余两把钥匙分别为、,根据题意,可以画出树形图,再根据概率公式求解即可.
【详解】
(1)设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为、,其余两把钥匙分别为、,根据题意,可以画出如下树形图:
由上图可知,上述试验共有8种等可能结果;
(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等.
∴P(一次打开锁)=.
【点睛】
如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
24、无解.
【解析】
两边都乘以x(x-3),去分母,化为整式方程求解即可.
【详解】
解:去分母得:x2﹣3x﹣x2=3x﹣18,
解得:x=3,
经检验x=3是增根,分式方程无解.
【点睛】
题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.
江苏省盐城市大丰区部分校2021-2022学年中考押题数学预测卷含解析: 这是一份江苏省盐城市大丰区部分校2021-2022学年中考押题数学预测卷含解析,共14页。试卷主要包含了2018的相反数是,函数y=自变量x的取值范围是等内容,欢迎下载使用。
湖南省湘潭市名校2021-2022学年中考押题数学预测卷含解析: 这是一份湖南省湘潭市名校2021-2022学年中考押题数学预测卷含解析,共22页。试卷主要包含了已知x+=3,则x2+=,把a•的根号外的a移到根号内得等内容,欢迎下载使用。
湖南省浏阳市部分校2022年中考数学猜题卷含解析: 这是一份湖南省浏阳市部分校2022年中考数学猜题卷含解析,共24页。试卷主要包含了下列事件中,属于必然事件的是等内容,欢迎下载使用。