|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年江苏省苏州吴中学区重点名校中考考前最后一卷数学试卷含解析
    立即下载
    加入资料篮
    2021-2022学年江苏省苏州吴中学区重点名校中考考前最后一卷数学试卷含解析01
    2021-2022学年江苏省苏州吴中学区重点名校中考考前最后一卷数学试卷含解析02
    2021-2022学年江苏省苏州吴中学区重点名校中考考前最后一卷数学试卷含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省苏州吴中学区重点名校中考考前最后一卷数学试卷含解析

    展开
    这是一份2021-2022学年江苏省苏州吴中学区重点名校中考考前最后一卷数学试卷含解析,共25页。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是(  )

    A.掷一枚正六面体的骰子,出现1点的概率
    B.抛一枚硬币,出现正面的概率
    C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率
    D.任意写一个整数,它能被2整除的概率
    2.关于x的方程=无解,则k的值为(  )
    A.0或 B.﹣1 C.﹣2 D.﹣3
    3.一元二次方程4x2﹣2x+=0的根的情况是( )
    A.有两个不相等的实数根 B.有两个相等的实数根
    C.没有实数根 D.无法判断
    4.在△ABC中,∠C=90°,,那么∠B的度数为( )
    A.60° B.45° C.30° D.30°或60°
    5.下列四个几何体,正视图与其它三个不同的几何体是(  )
    A. B.
    C. D.
    6.下列图形中,是中心对称图形但不是轴对称图形的是(  )
    A. B. C. D.
    7.如图图形中,既是轴对称图形,又是中心对称图形的是(  )
    A. B. C. D.
    8.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”
    如图所示,请根据所学知识计算:圆形木材的直径AC是(  )

    A.13寸 B.20寸 C.26寸 D.28寸
    9.如图,点C是直线AB,DE之间的一点,∠ACD=90°,下列条件能使得AB∥DE的是( )

    A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°
    10.在平面直角坐标系中,有两条抛物线关于x轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=+6x+m,则m的值是 ( )
    A.-4或-14 B.-4或14 C.4或-14 D.4或14
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为 .

    12.已知函数,当 时,函数值y随x的增大而增大.
    13.阅读下面材料:
    在数学课上,老师提出利用尺规作图完成下面问题:
    已知:∠ACB是△ABC的一个内角.
    求作:∠APB=∠ACB.
    小明的做法如下:
    如图
    ①作线段AB的垂直平分线m;
    ②作线段BC的垂直平分线n,与直线m交于点O;
    ③以点O为圆心,OA为半径作△ABC的外接圆;
    ④在弧ACB上取一点P,连结AP,BP.
    所以∠APB=∠ACB.
    老师说:“小明的作法正确.”
    请回答:
    (1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是_____;
    (2)∠APB=∠ACB的依据是_____.

    14.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.
    15.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为_____.

    16.一次函数 y=kx+b 的图像如图所示,则当kx+b>0 时,x 的取值范围为___________.

    三、解答题(共8题,共72分)
    17.(8分)在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),BC平分∠ABO交x轴于点C(2,0).点P是线段AB上一个动点(点P不与点A,B重合),过点P作AB的垂线分别与x轴交于点D,与y轴交于点E,DF平分∠PDO交y轴于点F.设点D的横坐标为t.
    (1)如图1,当0<t<2时,求证:DF∥CB;
    (2)当t<0时,在图2中补全图形,判断直线DF与CB的位置关系,并证明你的结论;
    (3)若点M的坐标为(4,-1),在点P运动的过程中,当△MCE的面积等于△BCO面积的倍时,直接写出此时点E的坐标.

    18.(8分)已知:如图,在半径为2的扇形中,°,点C在半径OB上,AC的垂直平分线交OA于点D,交弧AB于点E,联结.

    (1)若C是半径OB中点,求的正弦值;
    (2)若E是弧AB的中点,求证:;
    (3)联结CE,当△DCE是以CD为腰的等腰三角形时,求CD的长.
    19.(8分)(2016山东省烟台市)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:

    (1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?
    (2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)
    20.(8分)如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.
    求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.
    21.(8分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(﹣3,﹣4),与y轴交于点C.
    (1)求抛物线y=ax2+bx+2的函数表达式;
    (2)求直线BC的函数表达式;
    (3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EB﹣BC上的一个动点,
    ①当点P在线段BC上时,连接EP,若EP⊥BC,请直接写出线段BP与线段AE的关系;
    ②过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M′,如果点M′恰好在坐标轴上,请直接写出此时点P的坐标.

    22.(10分)研究发现,抛物线上的点到点F(0,1)的距离与到直线l:的距离相等.如图1所示,若点P是抛物线上任意一点,PH⊥l于点H,则PF=PH.
    基于上述发现,对于平面直角坐标系xOy中的点M,记点到点的距离与点到点的距离之和的最小值为d,称d为点M关于抛物线的关联距离;当时,称点M为抛物线的关联点.

    (1)在点,,,中,抛物线的关联点是_____ ;
    (2)如图2,在矩形ABCD中,点,点,
    ①若t=4,点M在矩形ABCD上,求点M关于抛物线的关联距离d的取值范围;
    ②若矩形ABCD上的所有点都是抛物线的关联点,则t的取值范围是________.
    23.(12分)如图,在平面直角坐标系中,四边形OABC为矩形,直线y=kx+b交BC于点E(1,m),交AB于点F(4,),反比例函数y=(x>0)的图象经过点E,F.
    (1)求反比例函数及一次函数解析式;
    (2)点P是线段EF上一点,连接PO、PA,若△POA的面积等于△EBF的面积,求点P的坐标.

    24.如图,在方格纸中.

    (1)请在方格纸上建立平面直角坐标系,使,,并求出点坐标;
    (2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;
    (3)计算的面积.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    解:A.掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;
    B.掷一枚硬币,出现正面朝上的概率为,故此选项错误;
    C.从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:≈0.33;故此选项正确;
    D.任意写出一个整数,能被2整除的概率为,故此选项错误.
    故选C.
    2、A
    【解析】
    方程两边同乘2x(x+3),得
    x+3=2kx,
    (2k-1)x=3,
    ∵方程无解,
    ∴当整式方程无解时,2k-1=0,k=,
    当分式方程无解时,①x=0时,k无解,
    ②x=-3时,k=0,
    ∴k=0或时,方程无解,
    故选A.
    3、B
    【解析】
    试题解析:在方程4x2﹣2x+ =0中,△=(﹣2)2﹣4×4× =0,
    ∴一元二次方程4x2﹣2x+=0有两个相等的实数根.
    故选B.
    考点:根的判别式.
    4、C
    【解析】
    根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可.
    【详解】
    解:∵,
    ∴∠A=60°.
    ∵∠C=90°,
    ∴∠B=90°-60°=30°.
    点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.
    5、C
    【解析】
    根据几何体的三视图画法先画出物体的正视图再解答.
    【详解】
    解:A、B、D三个几何体的主视图是由左上一个正方形、下方两个正方形构成的,
    而C选项的几何体是由上方2个正方形、下方2个正方形构成的,
    故选:C.
    【点睛】
    此题重点考查学生对几何体三视图的理解,掌握几何体的主视图是解题的关键.
    6、B
    【解析】
    根据轴对称图形与中心对称图形的概念判断即可.
    【详解】
    解:A、是轴对称图形,也是中心对称图形,故错误;
    B、是中心对称图形,不是轴对称图形,故正确;
    C、是轴对称图形,也是中心对称图形,故错误;
    D、是轴对称图形,也是中心对称图形,故错误.
    故选B.
    【点睛】
    本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    7、B
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故A不正确;
    B、既是轴对称图形,又是中心对称图形,故B正确;
    C、是轴对称图形,不是中心对称图形,故C不正确;
    D、既不是轴对称图形,也不是中心对称图形,故D不正确.
    故选B.
    【点睛】
    本题考查了轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.
    8、C
    【解析】
    分析:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.
    详解:设⊙O的半径为r.
    在Rt△ADO中,AD=5,OD=r-1,OA=r,
    则有r2=52+(r-1)2,
    解得r=13,
    ∴⊙O的直径为26寸,
    故选C.
    点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题
    9、B
    【解析】
    延长AC交DE于点F,根据所给条件如果能推出∠α=∠1,则能使得AB∥DE,否则不能使得AB∥DE;
    【详解】
    延长AC交DE于点F.
    A. ∵∠α+∠β=180°,∠β=∠1+90°,
    ∴∠α=90°-∠1,即∠α≠∠1,
    ∴不能使得AB∥DE;
    B. ∵∠β﹣∠α=90°,∠β=∠1+90°,
    ∴∠α=∠1,
    ∴能使得AB∥DE;
    C.∵∠β=3∠α,∠β=∠1+90°,
    ∴3∠α=90°+∠1,即∠α≠∠1,
    ∴不能使得AB∥DE;
    D.∵∠α+∠β=90°,∠β=∠1+90°,
    ∴∠α=-∠1,即∠α≠∠1,
    ∴不能使得AB∥DE;
    故选B.

    【点睛】
    本题考查了平行线的判定方法:①两同位角相等,两直线平行; ②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.
    10、D
    【解析】
    根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.
    【详解】
    ∵一条抛物线的函数表达式为y=x2+6x+m,
    ∴这条抛物线的顶点为(-3,m-9),
    ∴关于x轴对称的抛物线的顶点(-3,9-m),
    ∵它们的顶点相距10个单位长度.
    ∴|m-9-(9-m)|=10,
    ∴2m-18=±10,
    当2m-18=10时,m=1,
    当2m-18=-10时,m=4,
    ∴m的值是4或1.
    故选D.
    【点睛】
    本题考查了二次函数图象与几何变换,解答本题的关键是掌握二次函数的顶点坐标公式,坐标和线段长度之间的转换,关于x轴对称的点和抛物线的关系.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、36或4.
    【解析】
    (3)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,
    当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=36,得BE=3.
    由翻折的性质,得B′E=BE=3,
    ∴EG=AG﹣AE=8﹣3=5,
    ∴B′G===33,
    ∴B′H=GH﹣B′G=36﹣33=4,
    ∴DB′===;
    (3)当DB′=CD时,则DB′=36(易知点F在BC上且不与点C、B重合);
    (3)当CB′=CD时,
    ∵EB=EB′,CB=CB′,
    ∴点E、C在BB′的垂直平分线上,
    ∴EC垂直平分BB′,
    由折叠可知点F与点C重合,不符合题意,舍去.
    综上所述,DB′的长为36或.故答案为36或.

    考点:3.翻折变换(折叠问题);3.分类讨论.
    12、x≤﹣1.
    【解析】
    试题分析:∵=,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x≤﹣1时,y随x的增大而增大,故答案为x≤﹣1.
    考点:二次函数的性质.
    13、①线段垂直平分线上的点与这条线段两个端点的距离相等;②等量代换 同弧所对的圆周角相等
    【解析】
    (1)根据线段的垂直平分线的性质定理以及等量代换即可得出结论.
    (2)根据同弧所对的圆周角相等即可得出结论.
    【详解】
    (1)如图2中,

    ∵MN垂直平分AB,EF垂直平分BC,
    ∴OA=OB,OB=OC(线段垂直平分线上的点与这条线段两个端点的距离相等),
    ∴OA=OB=OC(等量代换)
    故答案是:
    (2)∵,
    ∴∠APB=∠ACB(同弧所对的圆周角相等).
    故答案是:(1)线段垂直平分线上的点与这条线段两个端点的距离相等和等量代换;(2)同弧所对的圆周角相等.
    【点睛】
    考查作图-复杂作图、线段的垂直平分线的性质、三角形的外心等知识,解题的关键是熟练掌握三角形外心的性质.
    14、1
    【解析】
    本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.
    【详解】
    解:设利润为w元,
    则w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,
    ∵10≤x≤20,
    ∴当x=1时,二次函数有最大值25,
    故答案是:1.
    【点睛】
    本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.
    15、
    【解析】
    由于六边形ABCDEF是正六边形,所以∠AOB=60°,故△OAB是等边三角形,OA=OB=AB=2,设点G为AB与⊙O的切点,连接OG,则OG⊥AB,OG=OA•sin60°,再根据S阴影=S△OAB-S扇形OMN,进而可得出结论.
    【详解】
    ∵六边形ABCDEF是正六边形,
    ∴∠AOB=60°,
    ∴△OAB是等边三角形,OA=OB=AB=2,
    设点G为AB与⊙O的切点,连接OG,则OG⊥AB,

    ∴S阴影=S△OAB-S扇形OMN=
    故答案为
    【点睛】
    考查不规则图形面积的计算,掌握扇形的面积公式是解题的关键.
    16、x>1
    【解析】
    分析:题目要求 kx+b>0,即一次函数的图像在x 轴上方时,观察图象即可得x的取值范围.
    详解:
    ∵kx+b>0,
    ∴一次函数的图像在x 轴上方时,
    ∴x的取值范围为:x>1.
    故答案为x>1.
    点睛:本题考查了一次函数与一元一次不等式的关系,主要考查学生的观察视图能力.

    三、解答题(共8题,共72分)
    17、(1)详见解析;(2)详见解析;(3)详见解析.
    【解析】
    (1)求出∠PBO+∠PDO=180°,根据角平分线定义得出∠CBO=∠PBO,∠ODF=∠PDO,求出∠CBO+∠ODF=90°,求出∠CBO=∠DFO,根据平行线的性质得出即可;
    (2)求出∠ABO=∠PDA,根据角平分线定义得出∠CBO=∠ABO,∠CDQ=∠PDO,求出∠CBO=∠CDQ,推出∠CDQ+∠DCQ=90°,求出∠CQD=90°,根据垂直定义得出即可;
    (3)分为两种情况:根据三角形面积公式求出即可.
    【详解】
    (1)证明:如图1.
    ∵在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),
    ∴∠AOB=90°.
    ∵DP⊥AB于点P,
    ∴∠DPB=90°,
    ∵在四边形DPBO中,∠DPB+∠PBO+∠BOD+∠PDO=360°,
    ∴∠PBO+∠PDO=180°,
    ∵BC平分∠ABO,DF平分∠PDO,
    ∴∠CBO=∠PBO,∠ODF=∠PDO,
    ∴∠CBO+∠ODF=(∠PBO+∠PDO)=90°,
    ∵在△FDO中,∠OFD+∠ODF=90°,
    ∴∠CBO=∠DFO,
    ∴DF∥CB. 
    (2)直线DF与CB的位置关系是:DF⊥CB,
    证明:延长DF交CB于点Q,如图2,

    ∵在△ABO中,∠AOB=90°,
    ∴∠BAO+∠ABO=90°,
    ∵在△APD中,∠APD=90°,
    ∴∠PAD+∠PDA=90°,
    ∴∠ABO=∠PDA,
    ∵BC平分∠ABO,DF平分∠PDO,
    ∴∠CBO=∠ABO,∠CDQ=∠PDO,
    ∴∠CBO=∠CDQ,∵在△CBO中,∠CBO+∠BCO=90°,
    ∴∠CDQ+∠DCQ=90°,
    ∴在△QCD中,∠CQD=90°,
    ∴DF⊥CB. 
    (3)解:过M作MN⊥y轴于N,
    ∵M(4,-1),
    ∴MN=4,ON=1,
    当E在y轴的正半轴上时,如图3,

    ∵△MCE的面积等于△BCO面积的倍时,
    ∴×2×OE+×(2+4)×1-×4×(1+OE)=××2×4,
    解得:OE=,
    当E在y轴的负半轴上时,如图4,

    ×(2+4)×1+×(OE-1)×4-×2×OE=××2×4,
    解得:OE=,
    即E的坐标是(0,)或(0,-).
    【点睛】
    本题考查了平行线的性质和判定,三角形内角和定理,坐标与图形性质,三角形的面积的应用,题目综合性比较强,有一定的难度.
    18、(2);(2)详见解析;(2)当是以CD为腰的等腰三角形时,CD的长为2或.
    【解析】
    (2)先求出OCOB=2,设OD=x,得出CD=AD=OA﹣OD=2﹣x,根据勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出结论;
    (2)先判断出,进而得出∠CBE=∠BCE,再判断出△OBE∽△EBC,即可得出结论;
    (3)分两种情况:①当CD=CE时,判断出四边形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;
    ②当CD=DE时,判断出∠DAE=∠DEA,再判断出∠OAE=OEA,进而得出∠DEA=∠OEA,即:点D和点O重合,即可得出结论.
    【详解】
    (2)∵C是半径OB中点,∴OCOB=2.
    ∵DE是AC的垂直平分线,∴AD=CD.设OD=x,∴CD=AD=OA﹣OD=2﹣x.
    在Rt△OCD中,根据勾股定理得:(2﹣x)2﹣x2=2,∴x,∴CD,∴sin∠OCD;
    (2)如图2,连接AE,CE.
    ∵DE是AC垂直平分线,∴AE=CE.
    ∵E是弧AB的中点,∴,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.
    连接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.
    ∵∠B=∠B,∴△OBE∽△EBC,∴,∴BE2=BO•BC;
    (3)△DCE是以CD为腰的等腰三角形,分两种情况讨论:
    ①当CD=CE时.
    ∵DE是AC的垂直平分线,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四边形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,设菱形的边长为a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,∴4﹣a2=a2﹣(2﹣a)2,∴a=﹣22(舍)或a=;∴CD=;
    ②当CD=DE时.
    ∵DE是AC垂直平分线,∴AD=CD,∴AD=DE,∴∠DAE=∠DEA.
    连接OE,∴OA=OE,∴∠OAE=∠OEA,∴∠DEA=∠OEA,∴点D和点O重合,此时,点C和点B重合,∴CD=2.
    综上所述:当△DCE是以CD为腰的等腰三角形时,CD的长为2或.

    【点睛】
    本题是圆的综合题,主要考查了勾股定理,线段垂直平分线的性质,菱形的判定和性质,锐角三角函数,作出辅助线是解答本题的关键.
    19、(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元.
    【解析】
    (1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元可列方程18x+12(20﹣x)=300,解方程即可;
    (2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.
    【详解】
    (1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,
    根据题意得:18x+12(20﹣x)=300,
    解得:x=10,
    则20﹣x=20﹣10=10,
    则甲、乙两种型号的产品分别为10万只,10万只;
    (2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,
    根据题意得:13y+8.8(20﹣y)≤239,
    解得:y≤15,
    根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,
    当y=15时,W最大,最大值为91万元.
    所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.
    考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.
    20、(1)证明见解析;(2)BH=.
    【解析】
    (1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;
    (2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.
    【详解】
    (1)连接OC,

    ∵AB是⊙O的直径,点C是的中点,
    ∴∠AOC=90°,
    ∵OA=OB,CD=AC,
    ∴OC是△ABD是中位线,
    ∴OC∥BD,
    ∴∠ABD=∠AOC=90°,
    ∴AB⊥BD,
    ∵点B在⊙O上,
    ∴BD是⊙O的切线;
    (2)由(1)知,OC∥BD,
    ∴△OCE∽△BFE,
    ∴,
    ∵OB=2,
    ∴OC=OB=2,AB=4,,
    ∴,
    ∴BF=3,
    在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,
    ∵S△ABF=AB•BF=AF•BH,
    ∴AB•BF=AF•BH,
    ∴4×3=5BH,
    ∴BH=.
    【点睛】
    此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.
    21、(1)y=﹣x2+x+2;(2)y=2x+2;(3)①线段BP与线段AE的关系是相互垂直;②点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).
    【解析】
    (1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,即可求解;
    (2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b即可求解;
    (3)①AE直线的斜率kAE=2,而直线BC斜率的kAE=2即可求解;
    ②考虑当P点在线段BC上时和在线段BE上时两种情况,利用PM′=PM即可求解.
    【详解】
    (1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,
    解得:a=﹣,b=,
    故函数的表达式为y=﹣x2+x+2;
    (2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b,
    解得:k=2,b=2,
    故:直线BC的函数表达式为y=2x+2,
    (3)①E是点B关于y轴的对称点,E坐标为(3,﹣4),
    则AE直线的斜率kAE=2,而直线BC斜率的kAE=2,
    ∴AE∥BC,而EP⊥BC,∴BP⊥AE
    而BP=AE,∴线段BP与线段AE的关系是相互垂直;
    ②设点P的横坐标为m,
    当P点在线段BC上时,
    P坐标为(m,2m+2),M坐标为(m,2),则PM=2m,
    直线MM′⊥BC,∴kMM′=﹣,
    直线MM′的方程为:y=﹣x+(2+m),
    则M′坐标为(0,2+m)或(4+m,0),
    由题意得:PM′=PM=2m,
    PM′2=42+m2=(2m)2,此式不成立,
    或PM′2=m2+(2m+2)2=(2m)2,
    解得:m=﹣4±2,
    故点P的坐标为(﹣4±2,﹣8±4);
    当P点在线段BE上时,
    点P坐标为(m,﹣4),点M坐标为(m,2),
    则PM=6,
    直线MM′的方程不变,为y=﹣x+(2+m),
    则M′坐标为(0,2+m)或(4+m,0),
    PM′2=m2+(6+m)2=(2m)2,
    解得:m=0,或﹣;
    或PM′2=42+42=(6)2,无解;
    故点P的坐标为(0,﹣4)或(﹣,﹣4);
    综上所述:
    点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).
    【点睛】
    主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
    22、 (1) (2)① ②
    【解析】
    【分析】(1)根据关联点的定义逐一进行判断即可得;
    (2))①当时,,,,,可以确定此时矩形上的所有点都在抛物线的下方,所以可得,由此可知,从而可得;
    ②由①知,分两种情况画出图形进行讨论即可得.
    【详解】(1),x=2时,y==1,此时P(2,1),则d=1+2=3,符合定义,是关联点;
    ,x=1时,y==,此时P(1,),则d=+=3,符合定义,是关联点;
    ,x=4时,y==4,此时P(4,4),则d=1+=6,不符合定义,不是关联点;
    ,x=0时,y==0,此时P(0,0),则d=4+5=9,不不符合定义,是关联点,
    故答案为;
    (2)①当时,,,,,
    此时矩形上的所有点都在抛物线的下方,
    ∴,
    ∴,
    ∵,
    ∴;
    ②由①,,
    如图2所示时,CF最长,当CF=4时,即=4,解得:t=,

    如图3所示时,DF最长,当DF=4时,即DF==4,解得 t=,

    故答案为
    【点睛】本题考查了新定义题,二次函数的综合,题目较难,读懂新概念,能灵活应用新概念,结合图形解题是关键.
    23、(1);;(2)点P坐标为(,).
    【解析】
    (1)将F(4,)代入,即可求出反比例函数的解析式;再根据求出E点坐标,将E、F两点坐标代入,即可求出一次函数解析式;
    (2)先求出△EBF的面积,
    点P是线段EF上一点,可设点P坐标为,
    根据面积公式即可求出P点坐标.
    【详解】
    解:(1)∵反比例函数经过点,
    ∴n=2,
    反比例函数解析式为.
    ∵的图象经过点E(1,m),
    ∴m=2,点E坐标为(1,2).
    ∵直线 过点,点,
    ∴,解得,
    ∴一次函数解析式为;
    (2)∵点E坐标为(1,2),点F坐标为,
    ∴点B坐标为(4,2),
    ∴BE=3,BF=,
    ∴,
    ∴ .
    点P是线段EF上一点,可设点P坐标为,
    ∴,
    解得,
    ∴点P坐标为.
    【点睛】
    本题主要考查反比例函数,一次函数的解析式以及三角形的面积公式.
    24、(1)作图见解析;.(2)作图见解析;(3)1.
    【解析】
    分析:(1)直接利用A,C点坐标得出原点位置进而得出答案;
    (2)利用位似图形的性质即可得出△A'B'C';
    (3)直接利用(2)中图形求出三角形面积即可.
    详解:(1)如图所示,即为所求的直角坐标系;B(2,1);

    (2)如图:△A'B'C'即为所求;
    (3)S△A'B'C'=×4×8=1.
    点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.

    相关试卷

    江苏省兴化市顾庄学区重点名校2021-2022学年中考数学考前最后一卷含解析: 这是一份江苏省兴化市顾庄学区重点名校2021-2022学年中考数学考前最后一卷含解析,共19页。

    江苏省苏州市吴中、吴江、相城区重点达标名校2022年中考考前最后一卷数学试卷含解析: 这是一份江苏省苏州市吴中、吴江、相城区重点达标名校2022年中考考前最后一卷数学试卷含解析,共25页。

    江苏省苏州市吴江区2021-2022学年中考考前最后一卷数学试卷含解析: 这是一份江苏省苏州市吴江区2021-2022学年中考考前最后一卷数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,对于不等式组,下列说法正确的是,计算的结果是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map