2022届江西省景德镇市乐平市中考数学最后冲刺浓缩精华卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列四个命题,正确的有( )个.
①有理数与无理数之和是有理数
②有理数与无理数之和是无理数
③无理数与无理数之和是无理数
④无理数与无理数之积是无理数.
A.1 B.2 C.3 D.4
2.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为( )
A.26×105 B.2.6×102 C.2.6×106 D.260×104
3.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )
A.① B.② C.③ D.④
4.下面几何的主视图是( )
A. B. C. D.
5.在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为( )
A. B.或
C. D.或
6.cos45°的值是( )
A. B. C. D.1
7.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( )
A.0.96×107 B.9.6×106 C.96×105 D.9.6×102
8.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为
A.12 B.9 C.6 D.4
9.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是( )
A. B.
C. D.
10.若分式有意义,则a的取值范围为( )
A.a≠4 B.a>4 C.a<4 D.a=4
11.不等式组 的整数解有( )
A.0个 B.5个 C.6个 D.无数个
12.设0<k<2,关于x的一次函数y=(k-2)x+2,当1≤x≤2时,y的最小值是( )
A.2k-2 B.k-1 C.k D.k+1
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.七巧板是我国祖先创造的一种智力玩具,它来源于勾股法,如图①整幅七巧板是由正方形ABCD分割成七小块(其中:五块等腰直角三角形、一块正方形和一块平行四边形)组成,如图②是由七巧板拼成的一个梯形,若正方形ABCD的边长为12cm,则梯形MNGH的周长是 cm(结果保留根号).
14.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为_____.
15.把抛物线y=2x2向右平移3个单位,再向下平移2个单位,得到的新的抛物线的表达式是_____.
16.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________
17.因式分解: =
18.一辆汽车在坡度为的斜坡上向上行驶130米,那么这辆汽车的高度上升了__________米.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.
20.(6分)如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD并延长交BC于点F.
(1)试判断∠CBD与∠CEB是否相等,并证明你的结论;
(2)求证:
(3)若BC=AB,求tan∠CDF的值.
21.(6分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.
22.(8分)解不等式组:
23.(8分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.
m= %,这次共抽取 名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?
24.(10分)在如图的正方形网格中,每一个小正方形的边长均为 1.格点三角形 ABC(顶点是网格线交点的三角形)的顶点 A、C 的坐标分别是(﹣2,0),(﹣3,3).
(1)请在图中的网格平面内建立平面直角坐标系,写出点 B 的坐标;
(2)把△ABC 绕坐标原点 O 顺时针旋转 90°得到△A1B1C1,画出△A1B1C1,写出点
B1的坐标;
(3)以坐标原点 O 为位似中心,相似比为 2,把△A1B1C1 放大为原来的 2 倍,得到△A2B2C2 画出△A2B2C2,使它与△AB1C1 在位似中心的同侧;
请在 x 轴上求作一点 P,使△PBB1 的周长最小,并写出点 P 的坐标.
25.(10分)如图,已知抛物线与轴交于两点(A点在B点的左边),与轴交于点.
(1)如图1,若△ABC为直角三角形,求的值;
(2)如图1,在(1)的条件下,点在抛物线上,点在抛物线的对称轴上,若以为边,以点、、、Q为顶点的四边形是平行四边形,求点的坐标;
(3)如图2,过点作直线的平行线交抛物线于另一点,交轴于点,若﹕=1﹕1. 求的值.
26.(12分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.
27.(12分)如图,AB是⊙O的直径,,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.
求∠BAC的度数;当点D在AB上方,且CD⊥BP时,求证:PC=AC;在点P的运动过程中
①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;
②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
解:①有理数与无理数的和一定是有理数,故本小题错误;
②有理数与无理数的和一定是无理数,故本小题正确;
③例如=0,0是有理数,故本小题错误;
④例如(﹣)×=﹣2,﹣2是有理数,故本小题错误.
故选A.
点睛:本题考查的是实数的运算及无理数、有理数的定义,熟知以上知识是解答此题的关键.
2、C
【解析】
科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
【详解】
260万=2600000=.
故选C.
【点睛】
此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
3、A
【解析】
由平面图形的折叠及正方体的表面展开图的特点解题.
【详解】
将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,
故选A.
【点睛】
本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.
4、B
【解析】
主视图是从物体正面看所得到的图形.
【详解】
解:从几何体正面看
故选B.
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
5、B
【解析】
分析:根据位似变换的性质计算即可.
详解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,
则点P的对应点的坐标为(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),
故选B.
点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.
6、C
【解析】
本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.
【详解】
cos45°= .
故选:C.
【点睛】
本题考查特殊角的三角函数值.
7、B
【解析】
试题分析:“960万”用科学记数法表示为9.6×106,故选B.
考点:科学记数法—表示较大的数.
8、B
【解析】
∵点,是中点
∴点坐标
∵在双曲线上,代入可得
∴
∵点在直角边上,而直线边与轴垂直
∴点的横坐标为-6
又∵点在双曲线
∴点坐标为
∴
从而,故选B
9、D
【解析】
分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.
详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;
B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;
C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;
D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;
故选D.
点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.
10、A
【解析】
分式有意义时,分母a-4≠0
【详解】
依题意得:a−4≠0,
解得a≠4.
故选:A
【点睛】
此题考查分式有意义的条件,难度不大
11、B
【解析】
先解每一个不等式,求出不等式组的解集,再求整数解即可.
【详解】
解不等式x+3>0,得x>﹣3,
解不等式﹣x≥﹣2,得x≤2,
∴不等式组的解集为﹣3<x≤2,
∴整数解有:﹣2,﹣1,0,1,2共5个,
故选B.
【点睛】
本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.
12、A
【解析】
先根据0<k<1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.
【详解】
∵0<k<1,
∴k-1<0,
∴此函数是减函数,
∵1≤x≤1,
∴当x=1时,y最小=1(k-1)+1=1k-1.
故选A.
【点睛】
本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、24+24
【解析】
仔细观察梯形从而发现其各边与原正方形各边之间的关系,则不难求得梯形的周长.
【详解】
解:观察图形得MH=GN=AD=12,HG=AC,
AD=DC=12,
AC=12,
HG=6.
梯形MNGH的周长=HG+HM+MN+NG=2HM+4HG=24+24.
故答案为24+24.
【点睛】
此题主要考查学生对等腰梯形的性质及正方形的性质的运用及观察分析图形的能力.
14、2
【解析】
延长AC交x轴于B′.根据光的反射原理,点B、B′关于y轴对称,CB=CB′.路径长就是AB′的长度.结合A点坐标,运用勾股定理求解.
【详解】
解:如图所示,
延长AC交x轴于B′.则点B、B′关于y轴对称,CB=CB′.作AD⊥x轴于D点.则AD=3,DB′=3+1=1.
由勾股定理AB′=2
∴AC+CB = AC+CB′= AB′=2.即光线从点A到点B经过的路径长为2.
考点:解直角三角形的应用
点评:本题考查了直角三角形的有关知识,同时渗透光学中反射原理,构造直角三角形是解决本题关键
15、y=1(x﹣3)1﹣1.
【解析】
抛物线的平移,实际上就是顶点的平移,先求出原抛物线的顶点坐标,再根据平移规律,推出新抛物线的顶点坐标,根据顶点式可求新抛物线的解析式.
【详解】
∵y=1x1的顶点坐标为(0,0),
∴把抛物线右平移3个单位,再向下平移1个单位,得新抛物线顶点坐标为(3,﹣1),
∵平移不改变抛物线的二次项系数,
∴平移后的抛物线的解析式是y=1(x﹣3)1﹣1.
故答案为y=1(x﹣3)1﹣1.
【点睛】
本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)1+k (a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移; k值正上移,负下移”.
16、
【解析】
由图形可得:
17、﹣3(x﹣y)1
【解析】
解:﹣3x1+6xy﹣3y1=﹣3(x1+y1﹣1xy)=﹣3(x﹣y)1.故答案为:﹣3(x﹣y)1.
点睛:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.
18、50.
【解析】
根据坡度的定义可以求得AC、BC的比值,根据AC、BC的比值和AB的长度即可求得AC的值,即可解题.
【详解】
解:如图,米
,
设,则,
则,
解得,
故答案为:50.
【点睛】
本题考查了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于基础题.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、1
【解析】
先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.
【详解】
解:a3b+2a2b2+ab3
=ab(a2+2ab+b2)
=ab(a+b)2,
将a+b=3,ab=2代入得,ab(a+b)2=2×32=1.
故代数式a3b+2a2b2+ab3的值是1.
20、(1)∠CBD与∠CEB相等,证明见解析;(2)证明见解析;(3)tan∠CDF=.
【解析】
试题分析:
(1)由AB是⊙O的直径,BC切⊙O于点B,可得∠ADB=∠ABC=90°,由此可得∠A+∠ABD=∠ABD+∠CBD=90°,从而可得∠A=∠CBD,结合∠A=∠CEB即可得到∠CBD=∠CEB;
(2)由∠C=∠C,∠CEB=∠CBD,可得∠EBC=∠BDC,从而可得△EBC∽△BDC,再由相似三角形的性质即可得到结论;
(3)设AB=2x,结合BC=AB,AB是直径,可得BC=3x,OB=OD=x,再结合∠ABC=90°,
可得OC=x,CD=(-1)x;由AO=DO,可得∠CDF=∠A=∠DBF,从而可得△DCF∽△BCD,由此可得:==,这样即可得到tan∠CDF=tan∠DBF==.
试题解析:
(1)∠CBD与∠CEB相等,理由如下:
∵BC切⊙O于点B,
∴∠CBD=∠BAD,
∵∠BAD=∠CEB,
∴∠CEB=∠CBD,
(2)∵∠C=∠C,∠CEB=∠CBD,
∴∠EBC=∠BDC,
∴△EBC∽△BDC,
∴;
(3)设AB=2x,∵BC=AB,AB是直径,
∴BC=3x,OB=OD=x,
∵∠ABC=90°,
∴OC=x,
∴CD=(-1)x,
∵AO=DO,
∴∠CDF=∠A=∠DBF,
∴△DCF∽△BCD,
∴==,
∵tan∠DBF==,
∴tan∠CDF=.
点睛:解答本题第3问的要点是:(1)通过证∠CDF=∠A=∠DBF,把求tan∠CDF转化为求tan∠DBF=;(2)通过证△DCF∽△BCD,得到.
21、(1);(2).
【解析】
(1)直接根据概率公式求解;
(2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x,y)位于第二象限的概率.
【详解】
(1)正数为2,所以该球上标记的数字为正数的概率为;
(2)画树状图为:
共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x,y)位于第二象限的概率==.
【点睛】
本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
22、﹣9<x<1.
【解析】
先求每一个不等式的解集,然后找出它们的公共部分,即可得出答案.
【详解】
解不等式1(x﹣1)<2x,得:x<1,
解不等式﹣<1,得:x>﹣9,
则原不等式组的解集为﹣9<x<1.
【点睛】
此题考查了解一元一次不等式组,用到的知识点是解一元一次不等式组的步骤,关键是找出两个不等式解集的公共部分.
23、 (1)、26%;50;(2)、公交车;(3)、300名.
【解析】
试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.
试题解析:(1)、1﹣14%﹣20%﹣40%=26%; 20÷40%=50;
骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:
(2)、由图可知,采用乘公交车上学的人数最多
(3)、该校骑自行车上学的人数约为:1500×20%=300(名).
答:该校骑自行车上学的学生有300名.
考点:统计图
24、(1)(﹣4,1);(2)(1,4);(3)见解析;(4)P(﹣3,0).
【解析】
(1)先建立平面直角坐标系,再确定B的坐标;(2)根据旋转要求画出△A1B1C1,再写出点B1的坐标;(3)根据位似的要求,作出△A2B2C2;(4)作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求.
【详解】
解:(1)如图所示,点B的坐标为(﹣4,1);
(2)如图,△A1B1C1即为所求,点B1的坐标(1,4);
(3)如图,△A2B2C2即为所求;
(4)如图,作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求,P(﹣3,0).
【点睛】
本题考核知识点:位似,轴对称,旋转. 解题关键点:理解位似,轴对称,旋转的意义.
25、 (1) ;(2) 和;(3)
【解析】
(1)设,,再根据根与系数的关系得到,根据勾股定理得到:、 ,根据列出方程,解方程即可;(2)求出A、B坐标,设出点Q坐标,利用平行四边形的性质,分类讨论点P坐标,利用全等的性质得出P点的横坐标后,分别代入抛物线解析式,求出P点坐标;
(3)过点作DH⊥轴于点,由::,可得::.设,可得 点坐标为,可得.设点坐标为.可证△∽△,利用相似性质列出方程整理可得到 ①,将代入抛物线上,可得②,联立①②解方程组,即可解答.
【详解】
解:设,,则是方程的两根,
∴.
∵已知抛物线与轴交于点.
∴
在△中:,在△中:,
∵△为直角三角形,由题意可知∠°,
∴,
即,
∴,
∴,
解得:,
又,
∴.
由可知:,令则,
∴,
∴.
①以为边,以点、、、Q为顶点的四边形是四边形时,
设抛物线的对称轴为 ,l与交于点,过点作⊥l,垂足为点,
即∠°∠.
∵四边形为平行四边形,
∴∥,又l∥轴,
∴∠∠=∠,
∴△≌△,
∴,
∴点的横坐标为,
∴
即点坐标为.
②当以为边,以点、、、Q为顶点的四边形是四边形时,
设抛物线的对称轴为 ,l与交于点,过点作⊥l,垂足为点,
即∠°∠.
∵四边形为平行四边形,
∴∥,又l∥轴,
∴∠∠=∠,
∴△≌△,
∴,
∴点的横坐标为,
∴
即点坐标为
∴符合条件的点坐标为和.
过点作DH⊥轴于点,
∵::,
∴::.
设,则点坐标为,
∴.
∵点在抛物线上,
∴点坐标为,
由(1)知,
∴,
∵∥,
∴△∽△,
∴,
∴,
即①,
又在抛物线上,
∴②,
将②代入①得:,
解得(舍去),
把代入②得:.
【点睛】
本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.
26、证明见解析.
【解析】
【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.
【详解】∵BE=CF,
∴BE+EF=CF+EF,
∴BF=CE,
在△ABF和△DCE中
,
∴△ABF≌△DCE(SAS),
∴∠GEF=∠GFE,
∴EG=FG.
【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.
27、(1)45°;(2)见解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120°;②36或.
【解析】
(1)易得△ABC是等腰直角三角形,从而∠BAC=∠CBA=45°;
(2)分当 B在PA的中垂线上,且P在右时;B在PA的中垂线上,且P在左;A在PB的中垂线上,且P在右时;A在PB的中垂线上,且P在左时四中情况求解;
(3)①先说明四边形OHEF是正方形,再利用△DOH∽△DFE求出EF的长,然后利用割补法求面积;
②根据△EPC∽△EBA可求PC=4,根据△PDC∽△PCA可求PD •PA=PC2=16,再根据S△ABP=S△ABC得到,利用勾股定理求出k2,然后利用三角形面积公式求解.
【详解】
(1)解:(1)连接BC,
∵AB是直径,
∴∠ACB=90°.
∴△ABC是等腰直角三角形,
∴∠BAC=∠CBA=45°;
(2)解:∵,
∴∠CDB=∠CDP=45°,CB= CA,
∴CD平分∠BDP
又∵CD⊥BP,
∴BE=EP,
即CD是PB的中垂线,
∴CP=CB= CA,
(3)① (Ⅰ)如图2,当 B在PA的中垂线上,且P在右时,∠ACD=15°;
(Ⅱ)如图3,当B在PA的中垂线上,且P在左,∠ACD=105°;
(Ⅲ)如图4,A在PB的中垂线上,且P在右时∠ACD=60°;
(Ⅳ)如图5,A在PB的中垂线上,且P在左时∠ACD=120°
②(Ⅰ)如图6, ,
.
(Ⅱ)如图7, ,
,
.
,
.
,
,
,
.
设BD=9k,PD=2k,
,
,
,
.
【点睛】
本题是圆的综合题,熟练掌握30°角所对的直角边等于斜边的一半,平行线的性质,垂直平分线的性质,相似三角形的判定与性质,圆周角定理,圆内接四边形的性质,勾股定理,同底等高的三角形的面积相等是解答本题的关键.
江西省兴国县2021-2022学年中考数学最后冲刺浓缩精华卷含解析: 这是一份江西省兴国县2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了已知,则的值是等内容,欢迎下载使用。
江西省上饶重点名校2022年中考数学最后冲刺浓缩精华卷含解析: 这是一份江西省上饶重点名校2022年中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了计算等内容,欢迎下载使用。
2022届浙教版重点名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届浙教版重点名校中考数学最后冲刺浓缩精华卷含解析,共23页。试卷主要包含了如图所示的几何体的俯视图是,如图,将△ABC绕点C等内容,欢迎下载使用。