|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届辽宁省丹东市第七中学中考数学押题试卷含解析
    立即下载
    加入资料篮
    2022届辽宁省丹东市第七中学中考数学押题试卷含解析01
    2022届辽宁省丹东市第七中学中考数学押题试卷含解析02
    2022届辽宁省丹东市第七中学中考数学押题试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届辽宁省丹东市第七中学中考数学押题试卷含解析

    展开
    这是一份2022届辽宁省丹东市第七中学中考数学押题试卷含解析,共21页。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(共10小题,每小题3分,共30分)
    1.下列实数中是无理数的是(  )
    A. B.2﹣2 C.5. D.sin45°
    2.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )
    A.方差 B.中位数 C.众数 D.平均数
    3.如图,左、右并排的两棵树AB和CD,小树的高AB=6m,大树的高CD=9m,小明估计自己眼睛距地面EF=1.5m,当他站在F点时恰好看到大树顶端C点.已知此时他与小树的距离BF=2m,则两棵树之间的距离BD是(  )

    A.1m B.m C.3m D.m
    4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是(    )
    A.9分 B.8分 C.7分 D.6分
    5.把不等式组的解集表示在数轴上,正确的是(  )
    A. B.
    C. D.
    6.如图,在△ABC中,cosB=,sinC=,AC=5,则△ABC的面积是(   )

    A. B.12 C.14 D.21
    7.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是(  )

    A.① B.② C.③ D.④
    8.如图,已知直线,点E,F分别在、上,,如果∠B=40°,那么( )

    A.20° B.40° C.60° D.80°
    9.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是(  )

    A.5 B.9 C.15 D.22
    10.下列性质中菱形不一定具有的性质是( )
    A.对角线互相平分 B.对角线互相垂直
    C.对角线相等 D.既是轴对称图形又是中心对称图形
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分线MN交AC于D,连接DB,若tan∠CBD=,则BD=_____.

    12.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半径为1,点P是斜边AB上的点,过点P作⊙C的一条切线PQ(点Q是切点),则线段PQ的最小值为_____.

    13.计算的结果为_____.
    14.如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,则tan∠DBE的值是_____.

    15.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .

    16.分解因式:x3y﹣2x2y+xy=______.
    三、解答题(共8题,共72分)
    17.(8分)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.

    18.(8分)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.1°,∠PBA=26.1.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米)
    (参考数据:sin38.1°=0.62,cos38.1°=0.78,tan38.1°=0.80,sin26.1°=0.41,cos26.1°=0.89,tan26.1°=0.10)

    19.(8分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.
    (1)求此抛物线的解析式及顶点D的坐标;
    (2)点M是抛物线上的动点,设点M的横坐标为m.
    ①当∠MBA=∠BDE时,求点M的坐标;
    ②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.

    20.(8分)计算:4sin30°+(1﹣)0﹣|﹣2|+()﹣2
    21.(8分)如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.
    (1)求顶点D的坐标(用含a的代数式表示);
    (2)若以AD为直径的圆经过点C.
    ①求抛物线的函数关系式;
    ②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;
    ③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.

    22.(10分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
    23.(12分)已知:如图,△MNQ中,MQ≠NQ.
    (1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;

    (2)参考(1)中构造全等三角形的方法解决下面问题:
    如图,在四边形ABCD中,,∠B=∠D.求证:CD=AB.

    24.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    A、是有理数,故A选项错误;
    B、是有理数,故B选项错误;
    C、是有理数,故C选项错误;
    D、是无限不循环小数,是无理数,故D选项正确;
    故选:D.
    2、A
    【解析】
    试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.
    故选A.
    考点:1、计算器-平均数,2、中位数,3、众数,4、方差
    3、B
    【解析】
    由∠AGE=∠CHE=90°,∠AEG=∠CEH可证明△AEG∽△CEH,根据相似三角形对应边成比例求出GH的长即BD的长即可.
    【详解】
    由题意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,
    ∵AG⊥EH,CH⊥EH,
    ∴∠AGE=∠CHE=90°,
    ∵∠AEG=∠CEH,
    ∴△AEG∽△CEH,
    ∴ == ,即 =,
    解得:GH=,
    则BD=GH=m,
    故选:B.
    【点睛】
    本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出相似三角形.
    4、C
    【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.
    详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为 :7分,
    故答案为:C.
    点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    5、B
    【解析】
    首先解出各个不等式的解集,然后求出这些解集的公共部分即可.
    【详解】
    解:由x﹣2≥0,得x≥2,
    由x+1<0,得x<﹣1,
    所以不等式组无解,
    故选B.
    【点睛】
    解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.
    6、A
    【解析】
    根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.
    【详解】
    解:过点A作AD⊥BC,

    ∵△ABC中,cosB=,sinC=,AC=5,
    ∴cosB==,
    ∴∠B=45°,
    ∵sinC===,
    ∴AD=3,
    ∴CD==4,
    ∴BD=3,
    则△ABC的面积是:×AD×BC=×3×(3+4)=.
    故选:A.
    【点睛】
    此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.
    7、A
    【解析】
    由平面图形的折叠及正方体的表面展开图的特点解题.
    【详解】
    将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,
    故选A.
    【点睛】
    本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.
    8、C
    【解析】
    根据平行线的性质,可得的度数,再根据以及平行线的性质,即可得出的度数.
    【详解】
    ∵,,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    故选C.
    【点睛】
    本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.
    9、B
    【解析】
    条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
    【详解】
    课外书总人数:6÷25%=24(人),
    看5册的人数:24﹣5﹣6﹣4=9(人),
    故选B.
    【点睛】
    本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.
    10、C
    【解析】
    根据菱形的性质:①菱形具有平行四边形的一切性质; ②菱形的四条边都相等; ③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; ④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.
    【详解】
    解:A、菱形的对角线互相平分,此选项正确;
    B、菱形的对角线互相垂直,此选项正确;
    C、菱形的对角线不一定相等,此选项错误;
    D、菱形既是轴对称图形又是中心对称图形,此选项正确;
    故选C.
    考点:菱形的性质

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2.
    【解析】
    由tan∠CBD== 设CD=3a、BC=4a,据此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.
    【详解】
    解:在Rt△BCD中,∵tan∠CBD==,
    ∴设CD=3a、BC=4a,
    则BD=AD=5a,
    ∴AC=AD+CD=5a+3a=8a,
    在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,
    解得:a= 或a=-(舍),
    则BD=5a=2,
    故答案为2.
    【点睛】
    本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,解题关键是熟记性质与定理并准确识图.
    12、 .
    【解析】
    当PC⊥AB时,线段PQ最短;连接CP、CQ,根据勾股定理知PQ2=CP2﹣CQ2,先求出CP的长,然后由勾股定理即可求得答案.
    【详解】
    连接CP、CQ;如图所示:
    ∵PQ是⊙C的切线,∴CQ⊥PQ,∠CQP=90°,根据勾股定理得:PQ2=CP2﹣CQ2,∴当PC⊥AB时,线段PQ最短.
    ∵在Rt△ACB中,∠A=30°,BC=2,∴AB=2BC=4,AC=2,∴CP===,∴PQ==,∴PQ的最小值是.
    故答案为:.

    【点睛】
    本题考查了切线的性质以及勾股定理的运用;注意掌握辅助线的作法,注意当PC⊥AB时,线段PQ最短是关键.
    13、﹣2
    【解析】
    根据分式的运算法则即可得解.
    【详解】
    原式===,
    故答案为:.
    【点睛】
    本题主要考查了同分母的分式减法,熟练掌握相关计算法则是解决本题的关键.
    14、1.
    【解析】
    求出AD=AB,设AD=AB=5x,AE=3x,则5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt△BDE中得出代入求出即可,
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AD=AB,
    ∵cosA=,BE=4,DE⊥AB,
    ∴设AD=AB=5x,AE=3x,
    则5x﹣3x=4,
    x=1,
    即AD=10,AE=6,
    在Rt△ADE中,由勾股定理得:
    在Rt△BDE中,
    故答案为:1.
    【点睛】
    本题考查了菱形的性质,勾股定理,解直角三角形的应用,关键是求出DE的长.
    15、1或.
    【解析】
    当△CEB′为直角三角形时,有两种情况:
    ①当点B′落在矩形内部时,如答图1所示.
    连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
    ②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
    【详解】
    当△CEB′为直角三角形时,有两种情况:

    ①当点B′落在矩形内部时,如答图1所示.
    连结AC,
    在Rt△ABC中,AB=1,BC=4,
    ∴AC==5,
    ∵∠B沿AE折叠,使点B落在点B′处,
    ∴∠AB′E=∠B=90°,
    当△CEB′为直角三角形时,只能得到∠EB′C=90°,
    ∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
    ∴EB=EB′,AB=AB′=1,
    ∴CB′=5-1=2,
    设BE=x,则EB′=x,CE=4-x,
    在Rt△CEB′中,
    ∵EB′2+CB′2=CE2,
    ∴x2+22=(4-x)2,解得,
    ∴BE=;
    ②当点B′落在AD边上时,如答图2所示.
    此时ABEB′为正方形,∴BE=AB=1.
    综上所述,BE的长为或1.
    故答案为:或1.
    16、xy(x﹣1)1
    【解析】
    原式提取公因式,再利用完全平方公式分解即可.
    【详解】
    解:原式=xy(x1-1x+1)=xy(x-1)1.
    故答案为:xy(x-1)1
    【点睛】
    此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.

    三、解答题(共8题,共72分)
    17、证明过程见解析
    【解析】
    要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.
    【详解】
    ∵BD⊥AC于点D,CE⊥AB于点E,
    ∴∠ADB=∠AEC=90°,
    在△ADB和△AEC中,

    ∴△ADB≌△AEC(ASA)
    ∴AB=AC,
    又∵AD=AE,
    ∴BE=CD.
    考点:全等三角形的判定与性质.
    18、49.2米
    【解析】
    设PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的长度,继而也可确定小桥在小道上的位置.
    【详解】
    解:设PD=x米,
    ∵PD⊥AB,∴∠ADP=∠BDP=90°.
    在Rt△PAD中,,∴.
    在Rt△PBD中,,∴.
    又∵AB=80.0米,∴,解得:x≈24.6,即PD≈24.6米.
    ∴DB=2x=49.2米.
    答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.
    19、(1)(1,4)(2)①点M坐标(﹣,)或(﹣,﹣);②m的值为 或
    【解析】
    (1)利用待定系数法即可解决问题;
    (2)①根据tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.
    【详解】
    解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,
    得到,解得,
    ∴抛物线的解析式为y=﹣x2+2x+3,
    ∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,
    ∴顶点D坐标(1,4);
    (2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),

    ∴MG=|﹣m2+2m+3|,BG=3﹣m,
    ∴tan∠MBA=,
    ∵DE⊥x轴,D(1,4),
    ∴∠DEB=90°,DE=4,OE=1,
    ∵B(3,0),
    ∴BE=2,
    ∴tan∠BDE==,
    ∵∠MBA=∠BDE,
    ∴=,
    当点M在x轴上方时, =,
    解得m=﹣或3(舍弃),
    ∴M(﹣,),
    当点M在x轴下方时, =,
    解得m=﹣或m=3(舍弃),
    ∴点M(﹣,﹣),
    综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);
    ②如图中,∵MN∥x轴,

    ∴点M、N关于抛物线的对称轴对称,
    ∵四边形MPNQ是正方形,
    ∴点P是抛物线的对称轴与x轴的交点,即OP=1,
    易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,
    当﹣m2+2m+3=1﹣m时,解得m=,
    当﹣m2+2m+3=m﹣1时,解得m=,
    ∴满足条件的m的值为或.
    【点睛】
    本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
    20、1.
    【解析】
    按照实数的运算顺序进行运算即可.
    【详解】
    原式
    =1.
    【点睛】
    本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及绝对值,熟练掌握各个知识点是解题的关键.
    21、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③点Q的坐标为(1,﹣4+2)或(1,﹣4﹣2).
    【解析】
    分析: (1)将二次函数的解析式进行配方即可得到顶点D的坐标.
    (2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值.
    ②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可.
    ③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD ²=2QG ²=2QB ²,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标.
    详解:
    (1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,
    ∴D(1,﹣4a).
    (2)①∵以AD为直径的圆经过点C,
    ∴△ACD为直角三角形,且∠ACD=90°;
    由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则:
    AC2=9a2+9、CD2=a2+1、AD2=16a2+4
    由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,
    化简,得:a2=1,由a<0,得:a=﹣1,
    ②∵a=﹣1,
    ∴抛物线的解析式:y=﹣x2+2x+3,D(1,4).
    ∵将△OBE绕平面内某一点旋转180°得到△PMN,
    ∴PM∥x轴,且PM=OB=1;
    设M(x,﹣x2+2x+3),则OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;
    ∵BF=2MF,
    ∴x+1=2(﹣x2+2x+3),化简,得:2x2﹣3x﹣5=0
    解得:x1=﹣1(舍去)、x2=.
    ∴M(,)、N(,).
    ③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如下图:

    ∵C(0,3)、D(1,4),
    ∴CH=DH=1,即△CHD是等腰直角三角形,
    ∴△QGD也是等腰直角三角形,即:QD2=2QG2;
    设Q(1,b),则QD=4﹣b,QG2=QB2=b2+4;
    得:(4﹣b)2=2(b2+4),
    化简,得:b2+8b﹣8=0,解得:b=﹣4±2;
    即点Q的坐标为(1,)或(1,).
    点睛: 此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD和⊙Q半径间的数量关系是解题题目的关键.
    22、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.
    【解析】
    【分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;
    (2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.
    【详解】(1)设第一批饮料进货单价为元,则:
    解得:
    经检验:是分式方程的解
    答:第一批饮料进货单价为8元.
    (2)设销售单价为元,则:

    化简得:,
    解得:,
    答:销售单价至少为11元.
    【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.
    23、(1)作图见解析;(2)证明书见解析.
    【解析】
    (1)以点N为圆心,以MQ长度为半径画弧,以点M为圆心,以NQ长度为半径画弧,两弧交于一点F,则△MNF为所画三角形.
    (2)延长DA至E,使得AE=CB,连结CE.证明△EAC≌△BCA,得:∠B =∠E,AB=CE,根据等量代换可以求得答案.
    【详解】
    解:(1)如图1,以N 为圆心,以MQ 为半径画圆弧;以M 为圆心,以NQ 为半径画圆弧;两圆弧的交点即为所求.

    (2)如图,延长DA至E,使得AE=CB,连结CE.
    ∵∠ACB +∠CAD =180°,∠DACDAC +∠EAC =180°,∴∠BACBCA =∠EAC.
    在△EAC和△BAC中,AE=CE,AC=CA,∠EAC=∠BCN,
    ∴△AECEAC≌△BCA (SAS).∴∠B=∠E,AB=CE.
    ∵∠B=∠D,∴∠D=∠E.∴CD=CE,∴CD=AB.

    考点:1.尺规作图;2.全等三角形的判定和性质.
    24、木竿PQ的长度为3.35米.
    【解析】
    过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质 得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.
    试题解析:
    【详解】
    解:过N点作ND⊥PQ于D,

    则四边形DPMN为矩形,
    ∴DN=PM=1.8m,DP=MN=1.1m,
    ∴,
    ∴QD==2.25,
    ∴PQ=QD+DP= 2.25+1.1=3.35(m).
    答:木竿PQ的长度为3.35米.
    【点睛】
    本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.

    相关试卷

    辽宁省丹东市凤城市白旗中学2021-2022学年中考数学押题试卷含解析: 这是一份辽宁省丹东市凤城市白旗中学2021-2022学年中考数学押题试卷含解析,共24页。试卷主要包含了的负倒数是,下列运算结果为正数的是,若,,则的值是等内容,欢迎下载使用。

    2022年辽宁省大连协作校中考数学押题试卷含解析: 这是一份2022年辽宁省大连协作校中考数学押题试卷含解析,共19页。试卷主要包含了关于的叙述正确的是等内容,欢迎下载使用。

    2022届辽宁省丹东市中考数学押题试卷含解析: 这是一份2022届辽宁省丹东市中考数学押题试卷含解析,共21页。试卷主要包含了下列计算错误的是,计算,3的倒数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map