2022届山东省滨州市联考中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是( )
A.0 B.3 C.﹣3 D.﹣7
2.若一个凸多边形的内角和为720°,则这个多边形的边数为
A.4 B.5 C.6 D.7
3.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为( )
A. B.
C. D.
4.在下列函数中,其图象与x轴没有交点的是( )
A.y=2x B.y=﹣3x+1 C.y=x2 D.y=
5.在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是( )
A.5 B.7 C.9 D.11
6.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是( )
A.1 B.-6 C.2或-6 D.不同于以上答案
7.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是( )
A.-5 B.-2 C.3 D.5
8.如果两圆只有两条公切线,那么这两圆的位置关系是( )
A.内切 B.外切 C.相交 D.外离
9.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是( )
A.y=(x﹣2)2+1 B.y=(x+2)2+1
C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3
10.若正比例函数y=3x的图象经过A(﹣2,y1),B(﹣1,y2)两点,则y1与y2的大小关系为( )
A.y1<y2 B.y1>y2 C.y1≤y2 D.y1≥y2
二、填空题(共7小题,每小题3分,满分21分)
11.化简:________.
12.如图,将一对直角三角形卡片的斜边AC重合摆放,直角顶点B,D在AC的两侧,连接BD,交AC于点O,取AC,BD的中点E,F,连接EF.若AB=12,BC=5,且AD=CD,则EF的长为_____.
13.从1,2,3,4,5,6,7,8这八个数中,任意抽取一个数,这个数恰好是合数的概率是__________.
14.如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(),D是AB边上的一点.将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么k的值是_______
15.分解因式6xy2-9x2y-y3 = _____________.
16.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为 (用n表示)
17.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B,C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=,有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或;④0<BE≤,其中正确的结论是 ________(填入正确结论的序号).
三、解答题(共7小题,满分69分)
18.(10分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:
他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在中,是边上的中线,若,求证:.如图②,已知矩形,如果在矩形外存在一点,使得,求证:.(可以直接用第(1)问的结论)在第(2)问的条件下,如果恰好是等边三角形,请求出此时矩形的两条邻边与的数量关系.
19.(5分)如图,已知▱ABCD.作∠B的平分线交AD于E点。(用尺规作图法,保留作图痕迹,不要求写作法);若▱ABCD的周长为10,CD=2,求DE的长。
20.(8分)从2017年1月1日起,我国驾驶证考试正式实施新的驾考培训模式,新规定C2驾驶证的培训学时为40学时,驾校的学费标准分不同时段,普通时段a元/学时,高峰时段和节假日时段都为b元/学时.
(1)小明和小华都在此驾校参加C2驾驶证的培训,下表是小明和小华的培训结算表(培训学时均为40),请你根据提供的信息,计算出a,b的值.
学员
培训时段
培训学时
培训总费用
小明
普通时段
20
6000元
高峰时段
5
节假日时段
15
小华
普通时段
30
5400元
高峰时段
2
节假日时段
8
(2)小陈报名参加了C2驾驶证的培训,并且计划学够全部基本学时,但为了不耽误工作,普通时段的培训学时不会超过其他两个时段总学时的,若小陈普通时段培训了x学时,培训总费用为y元
①求y与x之间的函数关系式,并确定自变量x的取值范围;
②小陈如何选择培训时段,才能使得本次培训的总费用最低?
21.(10分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).
根据上述信息,解答下列各题:
×
(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;
(2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;
(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).
统计量
平均数(次)
中位数(次)
众数(次)
方差
…
该班级男生
…
根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.
22.(10分)如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.
(1)求该抛物线的函数表达式;
(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;
(3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.
23.(12分)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.求第一批悠悠球每套的进价是多少元;如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?
24.(14分)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.
(1)请判断直线BC与⊙O的位置关系,并说明理由;
(2)已知AD=5,CD=4,求BC的长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】【分析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.
【详解】∵一次函数y=﹣2x+3中k=﹣2<0,
∴y随x的增大而减小,
∴在0≤x≤5范围内,
x=0时,函数值最大﹣2×0+3=3,
故选B.
【点睛】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y随x的增大而减小.
2、C
【解析】
设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.
【详解】
设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.
【点睛】
本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.
3、D
【解析】
因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,
根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,
可以列出方程:.
故选D.
4、D
【解析】
依据一次函数的图象,二次函数的图象以及反比例函数的图象进行判断即可.
【详解】
A.正比例函数y=2x与x轴交于(0,0),不合题意;
B.一次函数y=-3x+1与x轴交于(,0),不合题意;
C.二次函数y=x2与x轴交于(0,0),不合题意;
D.反比例函数y=与x轴没有交点,符合题意;
故选D.
5、B
【解析】
试题解析:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=1.故选B.
6、C
【解析】
解:∵点A为数轴上的表示-1的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-1-4=-6;
②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为-1+4=1.
故选C.
点睛:注意数的大小变化和平移之间的规律:左减右加.与点A的距离为4个单位长度的点B有两个,一个向左,一个向右.
7、B
【解析】
当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.
【详解】
把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,
∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;
把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,
∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.
即k≤-3或k≥1.
所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.
故选B.
【点睛】
本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.
8、C
【解析】
两圆内含时,无公切线;两圆内切时,只有一条公切线;两圆外离时,有4条公切线;两圆外切时,有3条公切线;两圆相交时,有2条公切线.
【详解】
根据两圆相交时才有2条公切线.
故选C.
【点睛】
本题考查了圆与圆的位置关系.熟悉两圆的不同位置关系中的外公切线和内公切线的条数.
9、C
【解析】
试题分析:根据顶点式,即A、C两个选项的对称轴都为,再将(0,1)代入,符合的式子为C选项
考点:二次函数的顶点式、对称轴
点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为,顶点坐标为,对称轴为
10、A
【解析】
分别把点A(−1,y1),点B(−1,y1)代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.
【详解】
解:∵点A(−1,y1),点B(−1,y1)是函数y=3x图象上的点,
∴y1=−6,y1=−3,
∵−3>−6,
∴y1<y1.
故选A.
【点睛】
本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
根据平面向量的加法法则计算即可
【详解】
.
故答案为:
【点睛】
本题考查平面向量的加减法则,解题的关键是熟练掌握平面向量的加减法则,注意平面向量的加减适合加法交换律以及结合律,适合去括号法则.
12、.
【解析】
先求出BE的值,作DM⊥AB,DN⊥BC延长线,先证明△ADM≌△CDN(AAS),得出AM=CN,DM=DN,再根据正方形的性质得BM=BN,设AM=CN=x,BM=AB-AM=12-x=BN=5+x,求出x=,BN=,根据BD为正方形的对角线可得出BD=, BF=BD=, EF==.
【详解】
∵∠ABC=∠ADC,
∴A,B,C,D四点共圆,
∴AC为直径,
∵E为AC的中点,
∴E为此圆圆心,
∵F为弦BD中点,
∴EF⊥BD,
连接BE,∴BE=AC===;
作DM⊥AB,DN⊥BC延长线,∠BAD=∠BCN,
在△ADM和△CDN中,
,
∴△ADM≌△CDN(AAS),
∴AM=CN,DM=DN,
∵∠DMB=∠DNC=∠ABC=90°,
∴四边形BNDM为矩形,
又∵DM=DN,
∴矩形BNDM为正方形,
∴BM=BN,
设AM=CN=x,BM=AB-AM=12-x=BN=5+x,
∴12-x=5+x,x=,BN=,
∵BD为正方形BNDM的对角线,
∴BD=BN=,BF=BD=,
∴EF===.
故答案为.
【点睛】
本题考查了正方形的性质与全等三角形的性质,解题的关键是熟练的掌握正方形与全等三角形的性质与应用.
13、.
【解析】
根据合数定义,用合数的个数除以数的总数即为所求的概率.
【详解】
∵在1,2,3,4,5,6,7,8这八个数中,合数有4、6、8这3个,∴这个数恰好是合数的概率是.
故答案为:.
【点睛】
本题考查了概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A);找到合数的个数是解题的关键.
14、-12
【解析】
过E点作EF⊥OC于F,如图所示:
由条件可知:OE=OA=5,,
所以EF=3,OF=4,
则E点坐标为(-4,3)
设反比例函数的解析式是y=,
则有k=-4×3=-12.
故答案是:-12.
15、-y(3x-y)2
【解析】
先提公因式-y,然后再利用完全平方公式进行分解即可得.
【详解】
6xy2-9x2y-y3
=-y(9x2-6xy+y2)
=-y(3x-y)2,
故答案为:-y(3x-y)2.
【点睛】
本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.
16、(2n,1)
【解析】
试题分析:根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可:
由图可知,n=1时,4×1+1=5,点A5(2,1),
n=2时,4×2+1=9,点A9(4,1),
n=3时,4×3+1=13,点A13(6,1),
∴点A4n+1(2n,1).
17、②③.
【解析】
试题解析:①∵∠ADE=∠B,∠DAE=∠BAD,
∴△ADE∽△ABD;
故①错误;
②作AG⊥BC于G,
∵∠ADE=∠B=α,tan∠α=,
∴,
∴,
∴cosα=,
∵AB=AC=15,
∴BG=1,
∴BC=24,
∵CD=9,
∴BD=15,
∴AC=BD.
∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,
∴∠EDB=∠DAC,
在△ACD与△DBE中,
,
∴△ACD≌△BDE(ASA).
故②正确;
③当∠BED=90°时,由①可知:△ADE∽△ABD,
∴∠ADB=∠AED,
∵∠BED=90°,
∴∠ADB=90°,
即AD⊥BC,
∵AB=AC,
∴BD=CD,
∴∠ADE=∠B=α且tan∠α=,AB=15,
∴
∴BD=1.
当∠BDE=90°时,易证△BDE∽△CAD,
∵∠BDE=90°,
∴∠CAD=90°,
∵∠C=α且cosα=,AC=15,
∴cosC=,
∴CD=.
∵BC=24,
∴BD=24-=
即当△DCE为直角三角形时,BD=1或.
故③正确;
④易证得△BDE∽△CAD,由②可知BC=24,
设CD=y,BE=x,
∴,
∴,
整理得:y2-24y+144=144-15x,
即(y-1)2=144-15x,
∴0<x≤,
∴0<BE≤.
故④错误.
故正确的结论为:②③.
考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质.
三、解答题(共7小题,满分69分)
18、(1)详见解析;(2)详见解析;(3)
【解析】
(1)利用等腰三角形的性质和三角形内角和即可得出结论;
(2)先判断出OE=AC,即可得出OE=BD,即可得出结论;
(3)先判断出△ABE是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.
【详解】
(1)∵AD=BD,
∴∠B=∠BAD,
∵AD=CD,
∴∠C=∠CAD,
在△ABC中,∠B+∠C+∠BAC=180°,
∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°
∴∠B+∠C=90°,
∴∠BAC=90°,
(2)如图②,连接与,交点为,连接
四边形是矩形
(3)如图3,过点做于点
四边形是矩形
,
是等边三角形
,
由(2)知,
在中,
,
【点睛】
此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD,解(2)的关键是判断出OE=AC,解(3)的关键是判断出△ABE是底角为30°的等腰三角形,进而构造直角三角形.
19、(1)作图见解析;(2)1
【解析】
(1)以点B为圆心,任意长为半径画弧分别与AB、BC相交。然后再分别以交点为圆心,以交点间的距离为半径分别画弧,两弧相交于一点,画出射线BE即得.
(2)根据平行四边形的对边相等,可得AB+AD=5,由两直线平行内错角相等可得∠AEB=∠EBC,利用角平分线即得∠ABE=∠EBC,即证 ∠AEB=∠ABE .根据等角对等边可得AB=AE=2,从而求出ED的长.
【详解】
(1)解:如图所示:
(2)解:∵平行四边形ABCD的周长为10
∴AB+AD=5
∵AD//BC
∴∠AEB=∠EBC
又∵BE平分∠ABC
∴∠ABE=∠EBC
∴∠AEB=∠ABE
∴AB=AE=2
∴ED=AD-AE=3-2=1
【点睛】
此题考查作图-基本作图和平行四边形的性质,解题关键在于掌握作图法则
20、(1)120,180;(2)①y=-60x+7200,0≤x≤;②x=时,y有最小值,此时y最小=-60×+7200=6400(元).
【解析】
(1)根据小明和小华的培训结算表列出关于a、b的二元一次方程组,解方程即可求解;
(2)①根据培训总费用=普通时段培训费用+高峰时段和节假日时段培训费用列出y与x之间的函数关系式,进而确定自变量x的取值范围;
②根据一次函数的性质结合自变量的取值范围即可求解.
【详解】
(1)由题意,得,
解得,
故a,b的值分别是120,180;
(2)①由题意,得y=120x+180(40-x),
化简得y=-60x+7200,
∵普通时段的培训学时不会超过其他两个时段总学时的,
∴x≤(40-x),
解得x≤,
又x≥0,
∴0≤x≤;
②∵y=-60x+7200,
k=-60<0,
∴y随x的增大而减小,
∴x取最大值时,y有最小值,
∵0≤x≤;
∴x=时,y有最小值,此时y最小=-60×+7200=6400(元).
【点睛】
本题考查了一次函数的应用,二元一次方程组的应用,理解题意得出数量关系是解题的关键.
21、(1)20,1;(2)2人;(1)男生比女生的波动幅度大.
【解析】
(1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.
(2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.
(1)比较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差.
【详解】
(1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是1.
故答案为20,1.
(2)由题意:该班女生对“两会”新闻的“关注指数”为=65%,所以,男生对“两会”新闻的“关注指数”为60%.设该班的男生有x人,则=60%,解得:x=2.
答:该班级男生有2人.
(1)该班级女生收看“两会”新闻次数的平均数为=1,女生收看“两会”新闻次数的方差为:=.
∵2>,∴男生比女生的波动幅度大.
【点睛】
本题考查了平均数,中位数,方差的意义.解题的关键是明确平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
22、(1)y=x2+2x﹣3;(2);(3)详见解析.
【解析】
试题分析:(1)先利用抛物线的对称性确定出点B的坐标,然后设抛物线的解析式为y=a(x+3)(x-1),将点D的坐标代入求得a的值即可;
(2)过点E作EF∥y轴,交AD与点F,过点C作CH⊥EF,垂足为H.设点E(m,m2+2m-3),则F(m,-m+1),则EF=-m2-3m+4,然后依据△ACE的面积=△EFA的面积-△EFC的面积列出三角形的面积与m的函数关系式,然后利用二次函数的性质求得△ACE的最大值即可;
(3)当AD为平行四边形的对角线时.设点M的坐标为(-1,a),点N的坐标为(x,y),利用平行四边形对角线互相平分的性质可求得x的值,然后将x=-2代入求得对应的y值,然后依据=,可求得a的值;当AD为平行四边形的边时.设点M的坐标为(-1,a).则点N的坐标为(-6,a+5)或(4,a-5),将点N的坐标代入抛物线的解析式可求得a的值.
试题解析:(1)∴A(1,0),抛物线的对称轴为直线x=-1,
∴B(-3,0),
设抛物线的表达式为y=a(x+3)(x-1),
将点D(-4,5)代入,得5a=5,解得a=1,
∴抛物线的表达式为y=x2+2x-3;
(2)过点E作EF∥y轴,交AD与点F,交x轴于点G,过点C作CH⊥EF,垂足为H.
设点E(m,m2+2m-3),则F(m,-m+1).
∴EF=-m+1-m2-2m+3=-m2-3m+4.
∴S△ACE=S△EFA-S△EFC=EF·AG-EF·HC=EF·OA=- (m+)2+.
∴△ACE的面积的最大值为;
(3)当AD为平行四边形的对角线时:
设点M的坐标为(-1,a),点N的坐标为(x,y).
∴平行四边形的对角线互相平分,
∴=,=,
解得x=-2,y=5-a,
将点N的坐标代入抛物线的表达式,得5-a=-3,
解得a=8,
∴点M的坐标为(-1,8),
当AD为平行四边形的边时:
设点M的坐标为(-1,a),则点N的坐标为(-6,a+5)或(4,a-5),
∴将x=-6,y=a+5代入抛物线的表达式,得a+5=36-12-3,解得a=16,
∴M(-1,16),
将x=4,y=a-5代入抛物线的表达式,得a-5=16+8-3,解得a=26,
∴M(-1,26),
综上所述,当点M的坐标为(-1,26)或(-1,16)或(-1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形.
23、(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是1元.
【解析】
分析:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据数量=总价÷单价结合第二批购进数量是第一批数量的1.5倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设每套悠悠球的售价为y元,根据销售收入-成本=利润结合全部售完后总利润不低于25%,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.
详解:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,
根据题意得:
,
解得:x=25,
经检验,x=25是原分式方程的解.
答:第一批悠悠球每套的进价是25元.
(2)设每套悠悠球的售价为y元,
根据题意得:500÷25×(1+1.5)y-500-900≥(500+900)×25%,
解得:y≥1.
答:每套悠悠球的售价至少是1元.
点睛:本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程是解题的关键;(2)根据各数量之间的关系,正确列出一元一次不等式.
24、(1)BC与相切;理由见解析;
(2)BC=6
【解析】
试题分析:(1)BC与相切;由已知可得∠BAD=∠BED又由∠DBC=∠BED可得∠BAD=∠DBC,由AB为直径可得∠ADB=90°,从而可得∠CBO=90°,继而可得BC与相切
(2)由AB为直径可得∠ADB=90°,从而可得∠BDC=90°,由BC与相切,可得∠CBO=90°,从而可得∠BDC=∠CBO,可得,所以得,得,由可得AC=9,从而可得BC=6(BC="-6" 舍去)
试题解析:(1)BC与相切;
∵,∴∠BAD=∠BED ,∵∠DBC=∠BED,∴∠BAD=∠DBC,∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,∴∠CBO=90°,∴点B在上,∴BC与相切
(2)∵AB为直径,∴∠ADB=90°,∴∠BDC=90°,∵BC与相切,∴∠CBO=90°,∴∠BDC=∠CBO,∴,∴,∴,∵,∴AC=9,∴,∴BC=6(BC="-6" 舍去)
考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.勾股定理.
2024年山东省滨州市邹平市码头中学中考数学模拟试卷(三)(含解析): 这是一份2024年山东省滨州市邹平市码头中学中考数学模拟试卷(三)(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年山东省滨州市博兴县中考数学模拟试卷(含解析): 这是一份2023年山东省滨州市博兴县中考数学模拟试卷(含解析),共19页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023年山东省滨州市滨城区中考数学模拟试卷(含解析): 这是一份2023年山东省滨州市滨城区中考数学模拟试卷(含解析),共24页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。