|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届泉州市泉港三川中学中考数学适应性模拟试题含解析
    立即下载
    加入资料篮
    2022届泉州市泉港三川中学中考数学适应性模拟试题含解析01
    2022届泉州市泉港三川中学中考数学适应性模拟试题含解析02
    2022届泉州市泉港三川中学中考数学适应性模拟试题含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届泉州市泉港三川中学中考数学适应性模拟试题含解析

    展开
    这是一份2022届泉州市泉港三川中学中考数学适应性模拟试题含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,△ABC为等腰直角三角形,∠C=90°,点P为△ABC外一点,CP=,BP=3,AP的最大值是(  )

    A.+3 B.4 C.5 D.3
    2.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有(  )

    A.1对 B.2对 C.3对 D.4对
    3.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( )

    A.94分,96分 B.96分,96分
    C.94分,96.4分 D.96分,96.4分
    4.方程5x+2y=-9与下列方程构成的方程组的解为的是(  )
    A.x+2y=1 B.3x+2y=-8
    C.5x+4y=-3 D.3x-4y=-8
    5.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=(  )

    A.110° B.120° C.125° D.135°
    6.如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,,则四边形EFCD的周长为  

    A.14 B.13 C.12 D.10
    7.在﹣3,0,4,这四个数中,最大的数是( )
    A.﹣3 B.0 C.4 D.
    8.如图,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为米,那么这两树在坡面上的距离为( )

    A. B. C.5cosα D.
    9.2017年人口普查显示,河南某市户籍人口约为2536000人,则该市户籍人口数据用科学记数法可表示为(  )
    A.2.536×104人 B.2.536×105人 C.2.536×106人 D.2.536×107人
    10.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在边长为1正方形ABCD中,点P是边AD上的动点,将△PAB沿直线BP翻折,点A的对应点为点Q,连接BQ、DQ.则当BQ+DQ的值最小时,tan∠ABP=_____.

    12.如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_米.(结果精确到0.1米,参考数据:≈1.41,≈1.73)

    13.如图所示,P为∠α的边OA上一点,且P点的坐标为(3,4),则sinα+cosα=_____.

    14.分解因式:mx2﹣4m=_____.
    15.分解因式:a3-12a2+36a=______.
    16.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC=__.

    三、解答题(共8题,共72分)
    17.(8分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.求∠CDE的度数;求证:DF是⊙O的切线;若AC=DE,求tan∠ABD的值.

    18.(8分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.
    (1)求从中随机抽取出一个黑球的概率是多少?
    (2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式.
    19.(8分)抛物线与x轴交于A,B两点(点A在点B的左边),与y轴正半轴交于点C.
    (1)如图1,若A(-1,0),B(3,0),
    ① 求抛物线的解析式;
    ② P为抛物线上一点,连接AC,PC,若∠PCO=3∠ACO,求点P的横坐标;
    (2)如图2,D为x轴下方抛物线上一点,连DA,DB,若∠BDA+2∠BAD=90°,求点D的纵坐标.


    20.(8分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.
    m= %,这次共抽取 名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?
    21.(8分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.
    (1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;
    (2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.

    22.(10分)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.

    (1)判断直线l与⊙O的位置关系,并说明理由;
    (2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;
    (3)在(2)的条件下,若DE=4,DF=3,求AF的长.
    23.(12分)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.

    (1)直接写出点E的坐标(用含t的代数式表示):   ;
    (2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;
    (3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.
    24.今年 3 月 12 日植树节期间, 学校预购进 A、B 两种树苗,若购进 A种树苗 3 棵,B 种树苗 5 棵,需 2100 元,若购进 A 种树苗 4 棵,B 种树苗 10棵,需 3800 元.
    (1)求购进 A、B 两种树苗的单价;
    (2)若该单位准备用不多于 8000 元的钱购进这两种树苗共 30 棵,求 A 种树苗至少需购进多少棵?



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    过点C作,且CQ=CP,连接AQ,PQ,证明≌根据全等三角形的性质,得到 根据等腰直角三角形的性质求出PQ的长度,进而根据,即可解决问题.
    【详解】
    过点C作,且CQ=CP,连接AQ,PQ,



    在和中





    AP的最大值是5.
    故选:C.
    【点睛】
    考查全等三角形的判定与性质,三角形的三边关系,作出辅助线是解题的关键.
    2、C
    【解析】
    ∵∠ACB=90°,CD⊥AB,
    ∴△ABC∽△ACD,
    △ACD∽CBD,
    △ABC∽CBD,
    所以有三对相似三角形.
    故选C.
    3、D
    【解析】
    解:总人数为6÷10%=60(人),
    则91分的有60×20%=12(人),
    98分的有60-6-12-15-9=18(人),
    第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96;
    这些职工成绩的平均数是(92×6+91×12+96×15+98×18+100×9)÷60
    =(552+1128+1110+1761+900)÷60
    =5781÷60
    =96.1.
    故选D.
    【点睛】
    本题考查1.中位数;2.扇形统计图;3.条形统计图;1.算术平均数,掌握概念正确计算是关键.
    4、D
    【解析】
    试题分析:将x与y的值代入各项检验即可得到结果.
    解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣1.
    故选D.
    点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.
    5、D
    【解析】
    如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,
    ∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,
    ∴∠ABE+∠BED+∠CDE=360°.
    又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,
    ∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,
    ∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.
    故选D.

    【点睛】
    本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.
    6、C
    【解析】
    ∵平行四边形ABCD,
    ∴AD∥BC,AD=BC,AO=CO,
    ∴∠EAO=∠FCO,
    ∵在△AEO和△CFO中,

    ∴△AEO≌△CFO,
    ∴AE=CF,EO=FO=1.5,
    ∵C四边形ABCD=18,∴CD+AD=9,
    ∴C四边形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.
    故选C.
    【点睛】
    本题关键在于利用三角形全等,解题关键是将四边形CDEF的周长进行转化.
    7、C
    【解析】
    试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小.因此,
    在﹣3,0,1,这四个数中,﹣3<0<<1,最大的数是1.故选C.
    8、D
    【解析】
    利用所给的角的余弦值求解即可.
    【详解】
    ∵BC=5米,∠CBA=∠α,∴AB==.
    故选D.

    【点睛】
    本题主要考查学生对坡度、坡角的理解及运用.
    9、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    2536000人=2.536×106人.
    故选C.
    【点睛】
    本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    10、B
    【解析】
    解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;
    当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
    当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
    当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
    当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
    故选B.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、﹣1
    【解析】
    连接DB,若Q点落在BD上,此时和最短,且为,设AP=x,则PD=1﹣x,PQ=x.解直角三角形得到AP=﹣1,根据三角函数的定义即可得到结论.
    【详解】
    如图:

    连接DB,若Q点落在BD上,此时和最短,且为,
    设AP=x,则PD=1﹣x,PQ=x.
    ∵∠PDQ=45°,
    ∴PD=PQ,即1﹣x=,
    ∴x=﹣1,
    ∴AP=﹣1,
    ∴tan∠ABP==﹣1,
    故答案为:﹣1.
    【点睛】
    本题考查了翻折变换(折叠问题),正方形的性质,轴对称﹣最短路线问题,正确的理解题意是解题的关键.
    12、2.9
    【解析】
    试题分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.
    考点:解直角三角形.
    13、
    【解析】
    根据正弦和余弦的概念求解.
    【详解】
    解:∵P是∠α的边OA上一点,且P点坐标为(3,4),

    ∴PB=4,OB=3,OP= =5,
    故sinα= = , cosα= ,
    ∴sinα+cosα=,
    故答案为
    【点睛】
    此题考查的是锐角三角函数的定义,解答此类题目的关键是找出所求角的对应边.
    14、m(x+2)(x﹣2)
    【解析】
    提取公因式法和公式法相结合因式分解即可.
    【详解】
    原式

    故答案为
    【点睛】
    本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.
    15、a(a-6)2
    【解析】
    原式提取a,再利用完全平方公式分解即可.
    【详解】
    原式=a(a2-12a+36)=a(a-6)2,
    故答案为a(a-6)2
    【点睛】
    本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.
    16、1.
    【解析】
    由三角形BCD为直角三角形,根据已知面积与BD的长求出CD的长,由OC+CD求出OD的长,确定出B的坐标,代入反比例解析式求出k的值,利用反比例函数k的几何意义求出三角形AOC面积即可.
    【详解】
    ∵BD⊥CD,BD=2,
    ∴S△BCD=BD•CD=2,
    即CD=2.
    ∵C(2,0),
    即OC=2,
    ∴OD=OC+CD=2+2=1,
    ∴B(1,2),代入反比例解析式得:k=10,
    即y=,
    则S△AOC=1.
    故答案为1.
    【点睛】
    本题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解答本题的关键.

    三、解答题(共8题,共72分)
    17、(1)90°;(1)证明见解析;(3)1.
    【解析】
    (1)根据圆周角定理即可得∠CDE的度数;(1)连接DO,根据直角三角形的性质和等腰三角形的性质易证∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切线;(3)根据已知条件易证△CDE∽△ADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值即可.
    【详解】
    解:(1)解:∵对角线AC为⊙O的直径,
    ∴∠ADC=90°,
    ∴∠EDC=90°;
    (1)证明:连接DO,
    ∵∠EDC=90°,F是EC的中点,
    ∴DF=FC,
    ∴∠FDC=∠FCD,
    ∵OD=OC,
    ∴∠OCD=∠ODC,
    ∵∠OCF=90°,
    ∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,
    ∴DF是⊙O的切线;
    (3)解:如图所示:可得∠ABD=∠ACD,
    ∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,
    ∴∠DCA=∠E,
    又∵∠ADC=∠CDE=90°,
    ∴△CDE∽△ADC,
    ∴,
    ∴DC1=AD•DE
    ∵AC=1DE,
    ∴设DE=x,则AC=1x,
    则AC1﹣AD1=AD•DE,
    期(1x)1﹣AD1=AD•x,
    整理得:AD1+AD•x﹣10x1=0,
    解得:AD=4x或﹣4.5x(负数舍去),
    则DC=,
    故tan∠ABD=tan∠ACD=.

    18、(1).(2).
    【解析】
    试题分析:(1)根据取出黑球的概率=黑球的数量÷球的总数量得出答案;(2)根据概率的计算方法得出方程,从求出函数关系式.
    试题解析:(1)取出一个黑球的概率
    (2)取出一个白球的概率


    与的函数关系式为:.
    考点:概率
    19、(1)①y=-x2+2x+3②(2)-1
    【解析】
    分析:(1)①把A、B的坐标代入解析式,解方程组即可得到结论;
    ②延长CP交x轴于点E,在x轴上取点D使CD=CA,作EN⊥CD交CD的延长线于N.由CD=CA ,OC⊥AD,得到∠DCO=∠ACO.由∠PCO=3∠ACO,得到∠ACD=∠ECD,从而有tan∠ACD=tan∠ECD,
    ,即可得出AI、CI的长,进而得到.设EN=3x,则CN=4x,由tan∠CDO=tan∠EDN,得到,故设DN=x,则CD=CN-DN=3x=,解方程即可得出E的坐标,进而求出CE的直线解析式,联立解方程组即可得到结论;
    (2)作DI⊥x轴,垂足为I.可以证明△EBD∽△DBC,由相似三角形对应边成比例得到,
    即,整理得.令y=0,得:.
    故,从而得到.由,得到,解方程即可得到结论.
    详解:(1)①把A(-1,0),B(3,0)代入得:
    ,解得:,

    ②延长CP交x轴于点E,在x轴上取点D使CD=CA,作EN⊥CD交CD的延长线于N.
    ∵CD=CA ,OC⊥AD,∴ ∠DCO=∠ACO.
    ∵∠PCO=3∠ACO,∴∠ACD=∠ECD,∴tan∠ACD=tan∠ECD,

    ∴,AI=,
    ∴CI=,∴.
    设EN=3x,则CN=4x.
    ∵tan∠CDO=tan∠EDN,
    ∴,∴DN=x,∴CD=CN-DN=3x=,
    ∴,∴DE= ,E(,0).
    CE的直线解析式为:,

    ,解得:.
    点P的横坐标 .

    (2)作DI⊥x轴,垂足为I.
    ∵∠BDA+2∠BAD=90°,∴∠DBI+∠BAD=90°.
    ∵∠BDI+∠DBI=90°,∴∠BAD=∠BDI.
    ∵∠BID=∠DIA,∴△EBD∽△DBC,∴,
    ∴,
    ∴.
    令y=0,得:.
    ∴,∴.
    ∵,
    ∴,
    解得:yD=0或-1.
    ∵D为x轴下方一点,
    ∴,
    ∴D的纵坐标-1 .
    点睛:本题是二次函数的综合题.考查了二次函数解析式、性质,相似三角形的判定与性质,根与系数的关系.综合性比较强,难度较大.
    20、 (1)、26%;50;(2)、公交车;(3)、300名.
    【解析】
    试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.
    试题解析:(1)、1﹣14%﹣20%﹣40%=26%; 20÷40%=50;
    骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:

    (2)、由图可知,采用乘公交车上学的人数最多
    (3)、该校骑自行车上学的人数约为:1500×20%=300(名).
    答:该校骑自行车上学的学生有300名.
    考点:统计图
    21、(1)见解析;(2)见解析.
    【解析】
    试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO;
    (2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.
    试题解析:
    证明:(1)选取①②,
    ∵在△BEO和△DFO中,
    ∴△BEO≌△DFO(ASA);
    (2)由(1)得:△BEO≌△DFO,
    ∴EO=FO,BO=DO,
    ∵AE=CF,
    ∴AO=CO,
    ∴四边形ABCD是平行四边形.
    点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.
    22、(1)直线l与⊙O相切;(2)证明见解析;(3).
    【解析】
    试题分析:(1)连接OE、OB、OC.由题意可证明,于是得到∠BOE=∠COE,由等腰三角形三线合一的性质可证明OE⊥BC,于是可证明OE⊥l,故此可证明直线l与⊙O相切;
    (2)先由角平分线的定义可知∠ABF=∠CBF,然后再证明∠CBE=∠BAF,于是可得到∠EBF=∠EFB,最后依据等角对等边证明BE=EF即可;
    (3)先求得BE的长,然后证明△BED∽△AEB,由相似三角形的性质可求得AE的长,于是可得到AF的长.
    试题解析:(1)直线l与⊙O相切.理由如下:
    如图1所示:连接OE、OB、OC.

    ∵AE平分∠BAC,
    ∴∠BAE=∠CAE.
    ∴.
    ∴∠BOE=∠COE.
    又∵OB=OC,
    ∴OE⊥BC.
    ∵l∥BC,
    ∴OE⊥l.
    ∴直线l与⊙O相切.
    (2)∵BF平分∠ABC,
    ∴∠ABF=∠CBF.
    又∵∠CBE=∠CAE=∠BAE,
    ∴∠CBE+∠CBF=∠BAE+∠ABF.
    又∵∠EFB=∠BAE+∠ABF,
    ∴∠EBF=∠EFB.
    ∴BE=EF.
    (3)由(2)得BE=EF=DE+DF=1.
    ∵∠DBE=∠BAE,∠DEB=∠BEA,
    ∴△BED∽△AEB.
    ∴,即,解得;AE=,
    ∴AF=AE﹣EF=﹣1=.
    考点:圆的综合题.
    23、 (1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析.
    【解析】
    (1)如图所示,过点E作EG⊥x轴于点G,则∠COP=∠PGE=90°,
    由题意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,
    ∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,
    又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,
    在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),
    ∴CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),
    (2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,
    ∴AD=t(4﹣t),
    ∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,
    ∵EG⊥x轴、FP⊥x轴,且EG=FP,
    ∴四边形EGPF为矩形,∴EF⊥BD,EF=PG,
    ∴S四边形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,
    ∴当t=2时,S有最小值是16;
    (3)①假设∠FBD为直角,则点F在直线BC上,
    ∵PF=OP<AB,
    ∴点F不可能在BC上,即∠FBD不可能为直角;
    ②假设∠FDB为直角,则点D在EF上,
    ∵点D在矩形的对角线PE上,
    ∴点D不可能在EF上,即∠FDB不可能为直角;
    ③假设∠BFD为直角且FB=FD,则∠FBD=∠FDB=45°,
    如图2,作FH⊥BD于点H,
    则FH=PA,即4﹣t=6﹣t,方程无解,
    ∴假设不成立,即△BDF不可能是等腰直角三角形.

    24、(1)购进 A 种树苗的单价为 200 元/棵,购进 B 种树苗的单价为 300 元/棵(2)A 种 树苗至少需购进 1 棵
    【解析】
    (1)设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据“若购进A种树苗3棵,B种树苗5棵,需210元,若购进A种树苗4棵,B种树苗1棵,需3800元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
    (2)设需购进A种树苗a棵,则购进B种树苗(30-a)棵,根据总价=单价×购买数量结合购买两种树苗的总费用不多于8000元,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.
    【详解】
    设购进 A 种树苗的单价为 x 元/棵,购进 B 种树苗的单价为 y 元/棵,根据题意得: ,
    解得: .
    答:购进 A 种树苗的单价为 200 元/棵,购进 B 种树苗的单价为 300 元/棵.
    (2)设需购进 A 种树苗 a 棵,则购进 B 种树苗(30﹣a)棵,根据题意得:
    200a+300(30﹣a)≤8000,
    解得:a≥1.
    ∴A种树苗至少需购进 1 棵.
    【点睛】
    本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量间的关系,正确列出一元一次不等式.

    相关试卷

    泉州市泉港三川中学2021-2022学年中考三模数学试题含解析: 这是一份泉州市泉港三川中学2021-2022学年中考三模数学试题含解析,共21页。

    福建省泉港一中学、城东中学2021-2022学年中考三模数学试题含解析: 这是一份福建省泉港一中学、城东中学2021-2022学年中考三模数学试题含解析,共26页。试卷主要包含了已知,代数式的值为,4的平方根是等内容,欢迎下载使用。

    2022年福建省泉州市泉港一中学、城东中学中考数学全真模拟试卷含解析: 这是一份2022年福建省泉州市泉港一中学、城东中学中考数学全真模拟试卷含解析,共17页。试卷主要包含了济南市某天的气温,对于数据,在一组数据,不等式组的解在数轴上表示为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map