2022届山东省威海市文登区中考三模数学试题含解析
展开
这是一份2022届山东省威海市文登区中考三模数学试题含解析,共22页。试卷主要包含了计算÷9的值是,一元一次不等式2等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是( )
月用电量(度)
25
30
40
50
60
户数
1
2
4
2
1
A.极差是3 B.众数是4 C.中位数40 D.平均数是20.5
2.从边长为的大正方形纸板中挖去一个边长为的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )
A. B.
C. D.
3.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于( )
A. B. C. D.
4.如图,在中,.点是的中点,连结,过点作,分别交于点,与过点且垂直于的直线相交于点,连结.给出以下四个结论:①;②点是的中点;③;④,其中正确的个数是( )
A.4 B.3 C.2 D.1
5.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为( )
A.(1,1) B.(2,1) C.(2,2) D.(3,1)
6.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( )
A.42° B.28° C.21° D.20°
7.计算(-18)÷9的值是( )
A.-9 B.-27 C.-2 D.2
8.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )
A.∠α=60°,∠α的补角∠β=120°,∠β>∠α
B.∠α=90°,∠α的补角∠β=90°,∠β=∠α
C.∠α=100°,∠α的补角∠β=80°,∠β<∠α
D.两个角互为邻补角
9.一元一次不等式2(1+x)>1+3x的解集在数轴上表示为( )
A. B. C. D.
10.把8a3﹣8a2+2a进行因式分解,结果正确的是( )
A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2 D.2a(2a+1)2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如果a2﹣b2=8,且a+b=4,那么a﹣b的值是__.
12.双曲线、在第一象限的图像如图,过y2上的任意一点A,作x
轴的平行线交y1于B,交y轴于C,过A作x轴的垂线交y1于D,交x轴于E,连结BD、CE,则=
.
13.不等式组的解集为____.
14.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是 分.
15.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.
16.分解因式:a2b+4ab+4b=______.
三、解答题(共8题,共72分)
17.(8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.从中任意摸出1个球,恰好摸到红球的概率是 ;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.
18.(8分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.求证:CD∥AB;填空:
①当∠DAE= 时,四边形ADFP是菱形;
②当∠DAE= 时,四边形BFDP是正方形.
19.(8分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.
(Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;
(Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;
(Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).
20.(8分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及△AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围.
21.(8分)某工厂计划生产,两种产品共10件,其生产成本和利润如下表.
种产品
种产品
成本(万元件)
2
5
利润(万元件)
1
3
(1)若工厂计划获利14万元,问,两种产品应分别生产多少件?
(2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?
22.(10分)填空并解答:
某单位开设了一个窗口办理业务,并按顾客“先到达,先办理”的方式服务,该窗口每2分钟服务一位顾客.已知早上8:00上班窗口开始工作时,已经有6位顾客在等待,在窗口工作1分钟后,又有一位“新顾客”到达,且以后每5分钟就有一位“新顾客”到达.该单位上午8:00上班,中午11:30下班.
(1)问哪一位“新顾客”是第一个不需要排队的?
分析:可设原有的6为顾客分别为a1、a2、a3、a4、a5、a6,“新顾客”为c1、c2、c3、c4….窗口开始工作记为0时刻.
a1
a2
a3
a4
a5
a6
c1
c2
c3
c4
…
到达窗口时刻
0
0
0
0
0
0
1
6
11
16
…
服务开始时刻
0
2
4
6
8
10
12
14
16
18
…
每人服务时长
2
2
2
2
2
2
2
2
2
2
…
服务结束时刻
2
4
6
8
10
12
14
16
18
20
…
根据上述表格,则第 位,“新顾客”是第一个不需要排队的.
(2)若其他条件不变,若窗口每a分钟办理一个客户(a为正整数),则当a最小取什么值时,窗口排队现象不可能消失.
分析:第n个“新顾客”到达窗口时刻为 ,第(n﹣1)个“新顾客”服务结束的时刻为 .
23.(12分)如图,热气球的探测器显示,从热气球 A 看一栋髙楼顶部 B 的仰角为 30°,看这栋高楼底部 C 的 俯角为 60°,热气球 A 与高楼的水平距离为 120m,求这栋高楼 BC 的高度.
24.如图,一次函数y=kx+b的图象与反比例函数y= (x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.
【详解】
解:A、这组数据的极差是:60-25=35,故本选项错误;
B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;
C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;
D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;
故选:C.
【点睛】
本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.
2、D
【解析】
分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.
【详解】
阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).
即:a2﹣b2=(a+b)(a﹣b).
所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).
故选:D.
【点睛】
考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.
3、A
【解析】
连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.
【详解】
解:连接AM,
∵AB=AC,点M为BC中点,
∴AM⊥CM(三线合一),BM=CM,
∵AB=AC=5,BC=6,
∴BM=CM=3,
在Rt△ABM中,AB=5,BM=3,
∴根据勾股定理得:AM=
=
=4,
又S△AMC=MN•AC=AM•MC,
∴MN=
= .
故选A.
【点睛】
综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.
4、C
【解析】
用特殊值法,设出等腰直角三角形直角边的长,证明△CDB∽△BDE,求出相关线段的长;易证△GAB≌△DBC,求出相关线段的长;再证AG∥BC,求出相关线段的长,最后求出△ABC和△BDF的面积,即可作出选择.
【详解】
解:由题意知,△ABC是等腰直角三角形,
设AB=BC=2,则AC=2,
∵点D是AB的中点,
∴AD=BD=1,
在Rt△DBC中,DC=,(勾股定理)
∵BG⊥CD,
∴∠DEB=∠ABC=90°,
又∵∠CDB=∠BDE,
∴△CDB∽△BDE,
∴∠DBE=∠DCB, ,即
∴DE= ,BE=,
在△GAB和△DBC中,
∴△GAB≌△DBC(ASA)
∴AG=DB=1,BG=CD=,
∵∠GAB+∠ABC=180°,
∴AG∥BC,
∴△AGF∽△CBF,
∴,且有AB=BC,故①正确,
∵GB=,AC=2,
∴AF==,故③正确,
GF=,FE=BG﹣GF﹣BE=,故②错误,
S△ABC=AB•AC=2,S△BDF=BF•DE=××=,故④正确.
故选B.
【点睛】
本题考查了相似三角形的判定与性质、全等三角形的判定与性质以及等腰直角三角形的相关性质,中等难度,注意合理的运用特殊值法是解题关键.
5、B
【解析】
直接利用已知点坐标建立平面直角坐标系进而得出答案.
【详解】
解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:
∴棋子“炮”的坐标为(2,1),
故答案为:B.
【点睛】
本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键.
6、B
【解析】
利用OB=DE,OB=OD得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC进行计算即可.
【详解】
解:连结OD,如图,
∵OB=DE,OB=OD,
∴DO=DE,
∴∠E=∠DOE,
∵∠1=∠DOE+∠E,
∴∠1=2∠E,
而OC=OD,
∴∠C=∠1,
∴∠C=2∠E,
∴∠AOC=∠C+∠E=3∠E,
∴∠E=∠AOC=×84°=28°.
故选:B.
【点睛】
本题考查了圆的认识:掌握与圆有关的概念( 弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.
7、C
【解析】
直接利用有理数的除法运算法则计算得出答案.
【详解】
解:(-18)÷9=-1.
故选:C.
【点睛】
此题主要考查了有理数的除法运算,正确掌握运算法则是解题关键.
8、C
【解析】
熟记反证法的步骤,然后进行判断即可.
解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;
A、∠α的补角∠β>∠α,符合假命题的结论,故A错误;
B、∠α的补角∠β=∠α,符合假命题的结论,故B错误;
C、∠α的补角∠β<∠α,与假命题结论相反,故C正确;
D、由于无法说明两角具体的大小关系,故D错误.
故选C.
9、B
【解析】
按照解一元一次不等式的步骤求解即可.
【详解】
去括号,得2+2x>1+3x;移项合并同类项,得x1
【解析】
分别解出两不等式的解集再求其公共解.
【详解】
由①得:x>1
由②得:x>
∴不等式组的解集是x>1.
【点睛】
求不等式的解集须遵循以下原则:同大取较大,同小取较小.小大大小中间找,大大小小解不了.
14、88
【解析】
试题分析:根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可:
∵笔试按60%、面试按40%计算,
∴总成绩是:90×60%+85×40%=88(分).
15、40°
【解析】
直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.
【详解】
如图所示:
∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,
∵∠1+∠2+∠3+∠4=220°,
∴∠1+∠2+∠6+∠3+∠4+∠7=360°,
∴∠6+∠7=140°,
∴∠5=180°-(∠6+∠7)=40°.
故答案为40°.
【点睛】
主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.
16、b(a+2)2
【解析】
根据公式法和提公因式法综合运算即可
【详解】
a2b+4ab+4b=.
故本题正确答案为.
【点睛】
本题主要考查因式分解.
三、解答题(共8题,共72分)
17、(1)(2)
【解析】
试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;
(2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.
试题解析:解:(1).
(2)用表格列出所有可能的结果:
第二次
第一次
红球1
红球2
白球
黑球
红球1
(红球1,红球2)
(红球1,白球)
(红球1,黑球)
红球2
(红球2,红球1)
(红球2,白球)
(红球2,黑球)
白球
(白球,红球1)
(白球,红球2)
(白球,黑球)
黑球
(黑球,红球1)
(黑球,红球2)
(黑球,白球)
由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.
∴P(两次都摸到红球)==.
考点:概率统计
18、(1)详见解析;(2)①67.5°;②90°.
【解析】
(1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;
(2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;
②根据四边形BFDP是正方形,可以求得∠DAE的度数.
【详解】
(1)证明:连接OD,如图所示,
∵射线DC切⊙O于点D,
∴OD⊥CD,
即∠ODF=90°,
∵∠AED=45°,
∴∠AOD=2∠AED=90°,
∴∠ODF=∠AOD,
∴CD∥AB;
(2)①连接AF与DP交于点G,如图所示,
∵四边形ADFP是菱形,∠AED=45°,OA=OD,
∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,
∴∠AGE=90°,∠DAO=45°,
∴∠EAG=45°,∠DAG=∠PEG=22.5°,
∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,
故答案为:67.5°;
②∵四边形BFDP是正方形,
∴BF=FD=DP=PB,
∠DPB=∠PBF=∠BFD=∠FDP=90°,
∴此时点P与点O重合,
∴此时DE是直径,
∴∠EAD=90°,
故答案为:90°.
【点睛】
本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.
19、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).
【解析】
(1)设OD为x,则BD=AD=3,在RT△ODA中应用勾股定理即可求解;
(1)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;
(3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.
【详解】
(Ⅰ)设OD为x,
∵点A(3,0),点B(0,),
∴AO=3,BO=
∴AB=6
∵折叠
∴BD=DA
在Rt△ADO中,OA1+OD1=DA1.
∴9+OD1=(﹣OD)1.
∴OD=
∴D(0,)
(Ⅱ)∵折叠
∴∠BDC=∠CDO=90°
∴CD∥OA
∴且BD=AC,
∴
∴BD=﹣18
∴OD=﹣(﹣18)=18﹣
∵tan∠ABO=,
∴∠ABC=30°,即∠BAO=60°
∵tan∠ABO=,
∴CD=11﹣6
∴D(11﹣6,11﹣18)
(Ⅲ)如图:过点C作CE⊥AO于E
∵CE⊥AO
∴OE=1,且AO=3
∴AE=1,
∵CE⊥AO,∠CAE=60°
∴∠ACE=30°且CE⊥AO
∴AC=1,CE=
∵BC=AB﹣AC
∴BC=6﹣1=4
若点B'落在A点右边,
∵折叠
∴BC=B'C=4,CE=,CE⊥OA
∴B'E=
∴OB'=1+
∴B'(1+,0)
若点B'落在A点左边,
∵折叠
∴BC=B'C=4,CE=,CE⊥OA
∴B'E=
∴OB'=﹣1
∴B'(1﹣,0)
综上所述:B'(1+,0),(1﹣,0)
【点睛】
本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.
20、(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.
【解析】
(1)先把B点坐标代入代入y=,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;
(2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和△AOB的面积=S△AOC+S△BOC进行计算;
(3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方.
【详解】
解:∵B(2,﹣4)在反比例函数y=的图象上,
∴m=2×(﹣4)=﹣8,
∴反比例函数解析式为:y=﹣,
把A(﹣4,n)代入y=﹣,
得﹣4n=﹣8,解得n=2,
则A点坐标为(﹣4,2).
把A(﹣4,2),B(2,﹣4)分别代入y=kx+b,
得,解得,
∴一次函数的解析式为y=﹣x﹣2;
(2)∵y=﹣x﹣2,
∴当﹣x﹣2=0时,x=﹣2,
∴点C的坐标为:(﹣2,0),
△AOB的面积=△AOC的面积+△COB的面积
=×2×2+×2×4
=6;
(3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.
【点睛】
本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.
21、(1)生产产品8件,生产产品2件;(2)有两种方案:方案①,种产品2件,则种产品8件;方案②,种产品3件,则种产品7件.
【解析】
(1)设生产种产品件,则生产种产品件,根据“工厂计划获利14万元”列出方程即可得出结论;
(2)设生产产品件,则生产产品件,根据题意,列出一元一次不等式组,求出y的取值范围,即可求出方案.
【详解】
解:(1)设生产种产品件,则生产种产品件,
依题意得:,
解得: ,
则,
答:生产产品8件,生产产品2件;
(2)设生产产品件,则生产产品件
,
解得:.
因为为正整数,故或3;
答:共有两种方案:方案①,种产品2件,则种产品8件;方案②,种产品3件,则种产品7件.
【点睛】
此题考查的是一元一次方程的应用和一元一次不等式组的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.
22、(1)5;(2)5n﹣4,na+6a.
【解析】
(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;
(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,…,则第n个“新顾客”到达窗口时刻为5n﹣4,由表格可知,“新顾客”服务开始的时间为6a,7a,8a,…,第n﹣1个“新顾客”服务开始的时间为(6+n﹣1)a=(5+n)a,第n﹣1个“新顾客”服务结束的时间为(5+n)a+a=na+6a.
【详解】
(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;
故答案为:5;
(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,…,
∴第n个“新顾客”到达窗口时刻为5n﹣4,
由表格可知,“新顾客”服务开始的时间为6a,7a,8a,…,
∴第n个“新顾客”服务开始的时间为(6+n)a,
∴第n﹣1个“新顾客”服务开始的时间为(6+n﹣1)a=(5+n)a,
∵每a分钟办理一个客户,
∴第n﹣1个“新顾客”服务结束的时间为(5+n)a+a=na+6a,
故答案为:5n﹣4,na+6a.
【点睛】
本题考查了列代数式,用代数式表示数的规律,解题关键是要读懂题目的意思,根据题目给出的条件,寻找规律,列出代数式.
23、这栋高楼的高度是
【解析】
过A作AD⊥BC,垂足为D,在直角△ABD与直角△ACD中,根据三角函数的定义求得BD和CD,再根据BC=BD+CD即可求解.
【详解】
过点A作AD⊥BC于点D,
依题意得,,,AD=120,
在Rt△ABD中,
∴,
在Rt△ADC中,
∴,
∴ ,
答:这栋高楼的高度是.
【点睛】
本题主要考查了解直角三角形的应用-仰角俯角问题,难度适中.对于一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算.
24、(1)y=2x﹣5,;(2).
【解析】
试题分析:(1)把A坐标代入反比例解析式求出m的值,确定出反比例解析式,再将B坐标代入求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;
(2)用矩形面积减去周围三个小三角形的面积,即可求出三角形ABC面积.
试题解析:(1)把A(2,﹣1)代入反比例解析式得:﹣1=,即m=﹣2,∴反比例解析式为,把B(,n)代入反比例解析式得:n=﹣4,即B(,﹣4),把A与B坐标代入y=kx+b中得:,解得:k=2,b=﹣5,则一次函数解析式为y=2x﹣5;
(2)
如图,
S△ABC=
考点:反比例函数与一次函数的交点问题;一次函数及其应用;反比例函数及其应用.
相关试卷
这是一份2023年山东省威海市文登区中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年山东省威海市文登区中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年山东省威海市文登区米山中学中考数学一模试卷(含答案),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。