2022届山东省聊城市冠县市级名校中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( )
A.42° B.28° C.21° D.20°
2.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是( )
A.150° B.140° C.130° D.120°
3.下列运算正确的是( )
A.a3•a2=a6 B.(2a)3=6a3
C.(a﹣b)2=a2﹣b2 D.3a2﹣a2=2a2
4.如图,点E是四边形ABCD的边BC延长线上的一点,则下列条件中不能判定AD∥BE的是( )
A. B. C. D.
5.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是( )
A. B. C. D.
6.2017年新设了雄安新区,周边经济受到刺激综合实力大幅跃升,其中某地区生产总值预计可增长到305.5亿元其中305.5亿用科学记数法表示为( )
A.305.5×104 B.3.055×102 C.3.055×1010 D.3.055×1011
7.的倒数是( )
A. B.-3 C.3 D.
8.化简的结果是( )
A. B. C. D.
9.如图,AB∥CD,直线EF与AB、CD分别相交于E、F,AM⊥EF于点M,若∠EAM=10°,那么∠CFE等于( )
A.80° B.85° C.100° D.170°
10.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为( )
A. B. C. D.
11.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为( )
A.6 B.8
C.10 D.12
12.在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是( )
A.中位数不变,方差不变 B.中位数变大,方差不变
C.中位数变小,方差变小 D.中位数不变,方差变小
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,小红作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2,B2,C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积,用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第8个正△A8B8C8的面积是_____.
14.如图,在等腰△ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则BC=_____cm
15.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.
16.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为________.
17.如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:
①四边形ACBE是菱形;
②∠ACD=∠BAE;
③AF:BE=2:1;
④S四边形AFOE:S△COD=2:1.
其中正确的结论有_____.(填写所有正确结论的序号)
18.若数据2、3、5、3、8的众数是a,则中位数是b,则a﹣b等于_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)阅读下列材料:
题目:如图,在△ABC中,已知∠A(∠A<45°),∠C=90°,AB=1,请用sinA、cosA表示sin2A.
20.(6分)如图,一根电线杆PQ直立在山坡上,从地面的点A看,测得杆顶端点P的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°,求电线杆PQ的高度.(结果保留根号).
21.(6分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表:
组别
身高
A
x<160
B
160≤x<165
C
165≤x<170
D
170≤x<175
E
x≥175
根据图表提供的信息,回答下列问题:
(1)样本中,男生的身高众数在 组,中位数在 组;
(2)样本中,女生身高在E组的有 人,E组所在扇形的圆心角度数为 ;
(3)已知该校共有男生600人,女生480人,请估让身高在165≤x<175之间的学生约有多少人?
22.(8分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
根据图中信息求出 , ;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?
23.(8分)先化简,再求值:(-)¸,其中=
24.(10分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.
(1)求证:AC是⊙O的切线;
(2)若BF=6,⊙O的半径为5,求CE的长.
25.(10分)作图题:在∠ABC内找一点P,使它到∠ABC的两边的距离相等,并且到点A、C的距离也相等.(写出作法,保留作图痕迹)
26.(12分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.学生小红计划选修两门课程,请写出所有可能的选法;若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?
27.(12分)如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t.
⑴用含t的代数式表示:AP= ,AQ= .
⑵当以A,P,Q为顶点的三角形与△ABC相似时,求运动时间是多少?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
利用OB=DE,OB=OD得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC进行计算即可.
【详解】
解:连结OD,如图,
∵OB=DE,OB=OD,
∴DO=DE,
∴∠E=∠DOE,
∵∠1=∠DOE+∠E,
∴∠1=2∠E,
而OC=OD,
∴∠C=∠1,
∴∠C=2∠E,
∴∠AOC=∠C+∠E=3∠E,
∴∠E=∠AOC=×84°=28°.
故选:B.
【点睛】
本题考查了圆的认识:掌握与圆有关的概念( 弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.
2、A
【解析】
直接根据圆周角定理即可得出结论.
【详解】
∵A、B、C是⊙O上的三点,∠B=75°,
∴∠AOC=2∠B=150°.
故选A.
3、D
【解析】
试题分析:根据同底数幂相乘,底数不变指数相加求解求解;
根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘求解;
根据完全平方公式求解;
根据合并同类项法则求解.
解:A、a3•a2=a3+2=a5,故A错误;
B、(2a)3=8a3,故B错误;
C、(a﹣b)2=a2﹣2ab+b2,故C错误;
D、3a2﹣a2=2a2,故D正确.
故选D.
点评:本题考查了完全平方公式,合并同类项法则,同底数幂的乘法,积的乘方的性质,熟记性质与公式并理清指数的变化是解题的关键.
4、A
【解析】
利用平行线的判定方法判断即可得到结果.
【详解】
∵∠1=∠2,
∴AB∥CD,选项A符合题意;
∵∠3=∠4,
∴AD∥BC,选项B不合题意;
∵∠D=∠5,
∴AD∥BC,选项C不合题意;
∵∠B+∠BAD=180°,
∴AD∥BC,选项D不合题意,
故选A.
【点睛】
此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.
5、B.
【解析】
试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:,故选B.
考点:由实际问题抽象出一元二次方程.
6、C
【解析】
解:305.5亿=3.055×1.故选C.
7、A
【解析】
先求出,再求倒数.
【详解】
因为
所以的倒数是
故选A
【点睛】
考核知识点:绝对值,相反数,倒数.
8、D
【解析】
将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.
【详解】
原式=×=×(+1)=2+.
故选D.
【点睛】
本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.
9、C
【解析】
根据题意,求出∠AEM,再根据AB∥CD,得出∠AEM与∠CFE互补,求出∠CFE.
【详解】
∵AM⊥EF,∠EAM=10°
∴∠AEM=80°
又∵AB∥CD
∴∠AEM+∠CFE=180°
∴∠CFE=100°.
故选C.
【点睛】
本题考查三角形内角和与两条直线平行内错角相等.
10、D
【解析】
分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.
详解:设乘公交车平均每小时走x千米,根据题意可列方程为:
.
故选D.
点睛:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可.
11、D
【解析】
根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.
【详解】
解:∵四边形ABCD为正方形,
∴AB=CD,AB∥CD,
∴∠ABF=∠GDF,∠BAF=∠DGF,
∴△ABF∽△GDF,
∴=2,
∴AF=2GF=4,
∴AG=2.
∵AD∥BC,DG=CG,
∴=1,
∴AG=GE
∴AE=2AG=1.
故选:D.
【点睛】
本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.
12、D
【解析】
根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断.
【详解】
∵原数据的中位数是=3,平均数为=3,
∴方差为×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=;
∵新数据的中位数为3,平均数为=3,
∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2;
所以新数据与原数据相比中位数不变,方差变小,
故选:D.
【点睛】
本题考查了中位数和方差,解题的关键是掌握中位数和方差的定义.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是,从而求出第8个正△A8B8C8的面积.
【详解】
正△A1B1C1的面积是,
而△A2B2C2与△A1B1C1相似,并且相似比是1:2,
则面积的比是,则正△A2B2C2的面积是×;
因而正△A3B3C3与正△A2B2C2的面积的比也是,面积是×()2;
依此类推△AnBnCn与△An-1Bn-1Cn-1的面积的比是,第n个三角形的面积是()n-1.
所以第8个正△A8B8C8的面积是×()7=.
故答案为.
【点睛】
本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键.
14、
【解析】
根据三角形的面积公式求出=,根据等腰三角形的性质得到BD=DC=BC,根据勾股定理列式计算即可.
【详解】
∵AD是BC边上的高,CE是AB边上的高,
∴AB•CE=BC•AD,
∵AD=6,CE=8,
∴=,
∴=,
∵AB=AC,AD⊥BC,
∴BD=DC=BC,
∵AB2−BD2=AD2,
∴AB2=BC2+36,即BC2=BC2+36,
解得:BC=.
故答案为:.
【点睛】
本题考查的是等腰三角形的性质、勾股定理的应用和三角形面积公式的应用,根据三角形的面积公式求出腰与底的比是解题的关
15、1.
【解析】
试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.
∴斜边上的中线长=×10=1.
考点:1.勾股定理;2. 直角三角形斜边上的中线性质.
16、1-1.
【解析】
将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG为等边三角形,进而得出△CEF为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此题得解.
【详解】
将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.
∵AB=AC=2,∠BAC=120°,
∴∠ACB=∠B=∠ACF=10°,
∴∠ECG=60°.
∵CF=BD=2CE,
∴CG=CE,
∴△CEG为等边三角形,
∴EG=CG=FG,
∴∠EFG=∠FEG=∠CGE=10°,
∴△CEF为直角三角形.
∵∠BAC=120°,∠DAE=60°,
∴∠BAD+∠CAE=60°,
∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.
在△ADE和△AFE中,
,
∴△ADE≌△AFE(SAS),
∴DE=FE.
设EC=x,则BD=CF=2x,DE=FE=6-1x,
在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,
EF==x,
∴6-1x=x,
x=1-,
∴DE=x=1-1.
故答案为:1-1.
【点睛】
本题考查了全等三角形的判定与性质、勾股定理以及旋转的性质,通过勾股定理找出方程是解题的关键.
17、①②④.
【解析】
根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵EC垂直平分AB,
∴OA=OB=AB=DC,CD⊥CE,
∵OA∥DC,
∴=,
∴AE=AD,OE=OC,
∵OA=OB,OE=OC,
∴四边形ACBE是平行四边形,
∵AB⊥EC,
∴四边形ACBE是菱形,故①正确,
∵∠DCE=90°,DA=AE,
∴AC=AD=AE,
∴∠ACD=∠ADC=∠BAE,故②正确,
∵OA∥CD,
∴,
∴,故③错误,
设△AOF的面积为a,则△OFC的面积为2a,△CDF的面积为4a,△AOC的面积=△AOE的面积=1a,
∴四边形AFOE的面积为4a,△ODC的面积为6a
∴S四边形AFOE:S△COD=2:1.故④正确.
故答案是:①②④.
【点睛】
此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.
18、2
【解析】
将数据排序后,位置在最中间的数值。即将数据分成两部分,一部分大于该数值,一部分小于该数值。中位数的位置:当样本数为奇数时,中位数=(N+1)/2 ; 当样本数为偶数时,中位数为N/2与1+N/2的均值;众数是在一组数据中,出现次数最多的数据。根据定义即可算出.
【详解】
2、1、5、1、8中只有1出现两次,其余都是1次,得众数为a=1.
2、1、5、1、8重新排列2、1、1、5、8,中间的数是1,中位数b=1.
∴a﹣b=1-1=2.
故答案为:2.
【点睛】
中位数与众数的定义.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、sin2A=2cosAsinA
【解析】
先作出直角三角形的斜边的中线,进而求出,∠CED=2∠A,最后用三角函数的定义即可得出结论
【详解】
解:如图,
作Rt△ABC的斜边AB上的中线CE,
则
∴∠CED=2∠A,
过点C作CD⊥AB于D,
在Rt△ACD中,CD=ACsinA,
在Rt△ABC中,AC=ABcosA=cosA
在Rt△CED中,sin2A=sin∠CED== 2ACsinA=2cosAsinA
【点睛】
此题主要解直角三角形,锐角三角函数的定义,直角三角形的斜边的中线等于斜边的一半,构造出直角三角形和∠CED=2∠A是解本题的关键.
20、(6+)米
【解析】
根据已知的边和角,设CQ=x,BC=QC=x,PC=BC=3x,根据PQ=BQ列出方程求解即可.
【详解】
解:延长PQ交地面与点C,
由题意可得:AB=6m,∠PCA=90°,∠PAC=45°,∠PBC=60°,∠QBC=30°,设CQ=x,则在Rt△BQC中,BC=QC=x,∴在Rt△PBC中PC=BC=3x,∵在Rt△PAC中,∠PAC=45°,则PC=AC,∴,3x=6+x,解得x==3+,∴PQ=PC-CQ=3x-x=2x=6+,则电线杆PQ高为(6+)米.
【点睛】
此题重点考察学生对解直角三角形的理解,掌握解直角三角形的方法是解题的关键.
21、(1)B,C;(2)2;(3)该校身高在165≤x<175之间的学生约有462人.
【解析】
根据直方图即可求得男生的众数和中位数,求得男生的总人数,就是女生的总人数,然后乘以对应的百分比即可求解.
【详解】
解:(1)∵直方图中,B组的人数为12,最多,
∴男生的身高的众数在B组,
男生总人数为:4+12+10+8+6=40,
按照从低到高的顺序,第20、21两人都在C组,
∴男生的身高的中位数在C组,
故答案为B,C;
(2)女生身高在E组的百分比为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,
∵抽取的样本中,男生、女生的人数相同,
∴样本中,女生身高在E组的人数有:40×5%=2(人),
故答案为2;
(3)600×+480×(25%+15%)=270+192=462(人).
答:该校身高在165≤x<175之间的学生约有462人.
【点睛】
考查频数(率)分布直方图, 频数(率)分布表, 扇形统计图, 中位数, 众数,比较基础,掌握计算方法是解题的关键.
22、(1)100,35;(2)补全图形,如图;(3)800人
【解析】
(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.
【详解】
解:(1)∵被调查总人数为m=10÷10%=100人,
∴用支付宝人数所占百分比n%= ,
∴m=100,n=35.
(2)网购人数为100×15%=15人,
微信人数所占百分比为,
补全图形如图:
(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人.
【点睛】
本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.
23、
【解析】
分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a的值代入化简后的式子得出答案.
详解:原式=
将
原式=
点睛:本题主要考查的是分式的化简求值,属于简单题型.解决这个问题的关键就是就是将括号里面的分式进行化成同分母.
24、(1)证明见解析;(2)CE=1.
【解析】
(1)根据等角对等边得∠OBE=∠OEB,由角平分线的定义可得∠OBE=∠EBC,从而可得∠OEB=∠EBC,根据内错角相等,两直线平行可得OE∥BC,根据两直线平行,同位角相等可得∠OEA=90°,从而可证AC是⊙O的切线.
(2)根据垂径定理可求BH=BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的长,从而求出CE的长.
【详解】
(1)证明:如图,连接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵ BE平分∠ABC.
∴∠OBE=∠EBC,
∴∠OEB=∠EBC,
∴OE∥BC,
∵ ∠ACB=90° ,
∴∠OEA=∠ACB=90°,
∴ AC是⊙O的切线 .
(2)解:过O作OH⊥BF,
∴BH=BF=3,四边形OHCE是矩形,
∴CE=OH,
在Rt△OBH中,BH=3,OB=5,
∴OH==1,
∴CE=1.
【点睛】
本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.
25、见解析
【解析】
先作出∠ABC的角平分线,再连接AC,作出AC的垂直平分线,两条平分线的交点即为所求点.
【详解】
①以B为圆心,以任意长为半径画弧,分别交BC、AB于D、E两点;
②分别以D、E为圆心,以大于DE为半径画圆,两圆相交于F点;
③连接AF,则直线AF即为∠ABC的角平分线;
⑤连接AC,分别以A、C为圆心,以大于AC为半径画圆,两圆相交于F、H两点;
⑥连接FH交BF于点M,则M点即为所求.
【点睛】
本题考查的是角平分线及线段垂直平分线的作法,熟练掌握是解题的关键.
26、(1)答案见解析;(2)
【解析】
分析:(1)直接列举出所有可能的结果即可.
(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.
详解:(1)学生小红计划选修两门课程,她所有可能的选法有:A书法、B阅读;A书法、C足球;A书法、D器乐;B阅读,C足球;B阅读,D器乐;C足球,D器乐.
共有6种等可能的结果数;
(2)画树状图为:
共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,
所以他们两人恰好选修同一门课程的概率
点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
27、(1)AP=2t,AQ=16﹣3t;(2)运动时间为秒或1秒.
【解析】
(1)根据路程=速度时间,即可表示出AP,AQ的长度.
(2)此题应分两种情况讨论.(1)当△APQ∽△ABC时;(2)当△APQ∽△ACB时.利用相似三角形的性质求解即可.
【详解】
(1)AP=2t,AQ=16﹣3t.
(2)∵∠PAQ=∠BAC,
∴当时,△APQ∽△ABC,即,解得
当时,△APQ∽△ACB,即,解得t=1.
∴运动时间为秒或1秒.
【点睛】
考查相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.注意不要漏解.
2023年山东省聊城市冠县中考数学二模试卷(含解析): 这是一份2023年山东省聊城市冠县中考数学二模试卷(含解析),共33页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年山东省聊城市冠县中考数学一模试卷(含解析): 这是一份2023年山东省聊城市冠县中考数学一模试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省高密市市级名校2022年中考数学最后一模试卷含解析: 这是一份山东省高密市市级名校2022年中考数学最后一模试卷含解析,共19页。试卷主要包含了估计﹣1的值在等内容,欢迎下载使用。