2022届宁波市海曙区中考数学模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,已知直线 PQ⊥MN 于点 O,点 A,B 分别在 MN,PQ 上,OA=1,OB=2,在直线 MN 或直线 PQ 上找一点 C,使△ABC是等腰三角形,则这样的 C 点有( )
A.3 个 B.4 个 C.7 个 D.8 个
2.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是( )
A.3 B.4 C.5 D.6
3.如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠DBC的大小为( )
A.15° B.35° C.25° D.45°
4.正比例函数y=(k+1)x,若y随x增大而减小,则k的取值范围是( )
A.k>1 B.k<1 C.k>﹣1 D.k<﹣1
5.下列运算正确的是( )
A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a7
6.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于( )
A.30° B.40° C.50° D.60°
7.下列实数中,在2和3之间的是( )
A. B. C. D.
8.如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为( )
A. B. C. D.
9.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是( )
A.a=﹣2 B.a= C.a=1 D.a=
10.如果,那么的值为( )
A.1 B.2 C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.计算:____________
12.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)
品种
第1年
第2年
第3年
第4年
第5年
品种
甲
9.8
9.9
10.1
10
10.2
甲
乙
9.4
10.3
10.8
9.7
9.8
乙
经计算,,试根据这组数据估计_____中水稻品种的产量比较稳定.
13.将一次函数的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.
14.不等式组的解集是 _____________.
15.图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为________.
16.已知是二元一次方程组的解,则m+3n的立方根为__.
17.写出经过点(0,0),(﹣2,0)的一个二次函数的解析式_____(写一个即可).
三、解答题(共7小题,满分69分)
18.(10分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B,求证:AC•CD=CP•BP;若AB=10,BC=12,当PD∥AB时,求BP的长.
19.(5分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使∠CAD=30,∠CBD=60.
(1)求AB的长(精确到0.1米,参考数据:);
(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.
20.(8分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.
求反比例函数和一次函数的解析式;根据图象写出一次函数的值大于反比例函数的值的x的取值范围.
21.(10分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:
请根据以上统计图提供的信息,解答下列问题:
(1)共抽取 名学生进行问卷调查;
(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;
(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数.
(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.
22.(10分)如图,抛物线y=ax2+bx﹣2经过点A(4,0),B(1,0).
(1)求出抛物线的解析式;
(2)点D是直线AC上方的抛物线上的一点,求△DCA面积的最大值;
(3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
23.(12分)先化简,再求值:,且x为满足﹣3<x<2的整数.
24.(14分)如图,在Rt△ABC中,∠C=90°,AC=AB.求证:∠B=30°.
请填空完成下列证明.
证明:如图,作Rt△ABC的斜边上的中线CD,
则 CD=AB=AD ( ).
∵AC=AB,
∴AC=CD=AD 即△ACD是等边三角形.
∴∠A= °.
∴∠B=90°﹣∠A=30°.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.
解:使△ABC是等腰三角形,
当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.
当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.
当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.
所以共8个.
故选D.
点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.
2、B
【解析】
分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.
解答:解:从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体.故选B.
3、A
【解析】
根据等腰三角形的性质以及三角形内角和定理可得∠A =50°,再根据平行线的性质可得∠ACD=∠A=50°,由圆周角定理可行∠D=∠A=50°,再根据三角形内角和定理即可求得∠DBC的度数.
【详解】
∵AB=AC,
∴∠ABC=∠ACB=65°,
∴∠A=180°-∠ABC-∠ACB=50°,
∵DC//AB,
∴∠ACD=∠A=50°,
又∵∠D=∠A=50°,
∴∠DBC=180°-∠D -∠BCD=180°-50°-(65°+50°)=15°,
故选A.
【点睛】
本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容是解题的关键.
4、D
【解析】
根据正比例函数图象与系数的关系列出关于k的不等式k+1<0,然后解不等式即可.
【详解】
解:∵正比例函数 y=(k+1)x中,y的值随自变量x的值增大而减小,
∴k+1<0,
解得,k<-1;
故选D.
【点睛】
本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.
5、B
【解析】
根据同底数幂的乘法、除法、幂的乘方依次计算即可得到答案.
【详解】
A、a3+a3=2a3,故A错误;
B、a6÷a2=a4,故B正确;
C、a3•a5=a8,故C错误;
D、(a3)4=a12,故D错误.
故选:B.
【点睛】
此题考查整式的计算,正确掌握同底数幂的乘法、除法、幂的乘方的计算方法是解题的关键.
6、C
【解析】
试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.
∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.
∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC﹣∠DCA="50°." ∴∠BAE=50°.
故选C.
考点:1.面动旋转问题; 2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质.
7、C
【解析】
分析:先求出每个数的范围,逐一分析得出选项.
详解:
A、3<π<4,故本选项不符合题意;
B、1<π−2<2,故本选项不符合题意;
C、2<<3,故本选项符合题意;
D、3<<4,故本选项不符合题意;
故选C.
点睛:本题考查了估算无理数的大小,能估算出每个数的范围是解本题的关键.
8、B
【解析】
先利用三角函数求出∠BAE=45°,则BE=AB=,∠DAE=45°,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD进行计算即可.
【详解】
解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.
∵AD∥BC,∴∠DAE=∠BEA=45°,∴图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.
故选B.
【点睛】
本题考查了扇形面积的计算.阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.
9、A
【解析】
将各选项中所给a的值代入命题“对于任意实数a, ”中验证即可作出判断.
【详解】
(1)当时,,此时,
∴当时,能说明命题“对于任意实数a, ”是假命题,故可以选A;
(2)当时,,此时,
∴当时,不能说明命题“对于任意实数a, ”是假命题,故不能B;
(3)当时,,此时,
∴当时,不能说明命题“对于任意实数a, ”是假命题,故不能C;
(4)当时,,此时,
∴当时,不能说明命题“对于任意实数a, ”是假命题,故不能D;
故选A.
【点睛】
熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的方法”是解答本题的关键.
10、D
【解析】
先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案.
【详解】
故选:D.
【点睛】
本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、y
【解析】
根据幂的乘方和同底数幂相除的法则即可解答.
【详解】
【点睛】
本题考查了幂的乘方和同底数幂相除,熟练掌握:幂的乘方,底数不变,指数相乘的法则及同底数幂相除,底数不变,指数相减是关键.
12、甲
【解析】
根据方差公式分别求出两种水稻的产量的方差,再进行比较即可.
【详解】
甲种水稻产量的方差是:
,
乙种水稻产量的方差是:
,
∴0.02<0.124.∴产量比较稳定的小麦品种是甲.
13、
【解析】
试题分析:解:设y=x+b,
∴3=2+b,解得:b=1.
∴函数解析式为:y=x+1.故答案为y=x+1.
考点:一次函数
点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k的值不变.
14、x<-1
【解析】
解不等式①得:x<5,
解不等式②得:x<-1
所以不等式组的解集是x<-1.
故答案是:x<-1.
15、1.
【解析】
先设点D坐标为(a,b),得出点B的坐标为(2a,2b),A的坐标为(4a,b),再根据△AOD的面积为3,列出关系式求得k的值.
解:设点D坐标为(a,b),
∵点D为OB的中点,
∴点B的坐标为(2a,2b),
∴k=4ab,
又∵AC⊥y轴,A在反比例函数图象上,
∴A的坐标为(4a,b),
∴AD=4a﹣a=3a,
∵△AOD的面积为3,
∴×3a×b=3,
∴ab=2,
∴k=4ab=4×2=1.
故答案为1
“点睛”本题主要考查了反比例函数系数k的几何意义,以及运用待定系数法求反比例函数解析式,根据△AOD的面积为1列出关系式是解题的关键.
16、3
【解析】
把x与y的值代入方程组求出m与n的值,即可确定出所求.
【详解】
解:把代入方程组得:
相加得:m+3n=27,
则27的立方根为3,
故答案为3
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值.
17、y=x2+2x(答案不唯一).
【解析】
设此二次函数的解析式为y=ax(x+2),令a=1即可.
【详解】
∵抛物线过点(0,0),(﹣2,0),
∴可设此二次函数的解析式为y=ax(x+2),
把a=1代入,得y=x2+2x.
故答案为y=x2+2x(答案不唯一).
【点睛】
本题考查的是待定系数法求二次函数解析式,此题属开放性题目,答案不唯一.
三、解答题(共7小题,满分69分)
18、(1)证明见解析;(2).
【解析】
(2)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;
(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.
解:(1)∵AB=AC,∴∠B=∠C.
∵∠APD=∠B,∴∠APD=∠B=∠C.
∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,
∴∠BAP=∠DPC,
∴△ABP∽△PCD,
∴,
∴AB•CD=CP•BP.
∵AB=AC,
∴AC•CD=CP•BP;
(2)∵PD∥AB,∴∠APD=∠BAP.
∵∠APD=∠C,∴∠BAP=∠C.
∵∠B=∠B,
∴△BAP∽△BCA,
∴.
∵AB=10,BC=12,
∴,
∴BP=.
“点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP转化为证明AB•CD=CP•BP是解决第(1)小题的关键,证到∠BAP=∠C进而得到△BAP∽△BCA是解决第(2)小题的关键.
19、(1)24.2米(2) 超速,理由见解析
【解析】
(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.
(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.
【详解】
解:(1)由題意得,
在Rt△ADC中,,
在Rt△BDC中,,
∴AB=AD-BD=(米).
(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),
∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.
∵43.56千米/小时大于40千米/小时,
∴此校车在AB路段超速.
20、 (1)y=,y=−x−1;(2)x<−2或0
(1)利用点A的坐标可求出反比例函数解析式,再把B(1,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;
(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数的值的x的取值范围.
【详解】
(1)∵A(−2,1)在反比例函数y=的图象上,
∴1=,解得m=−2.
∴反比例函数解析式为y=,
∵B(1,n)在反比例函数上,
∴n=−2,
∴B的坐标(1,−2),
把A(−2,1),B(1,−2)代入y=kx+b得
解得:
∴一次函数的解析式为y=−x−1;
(2)由图像知:当x<−2或0
本题考查了反比例函数与一次函数的交点问题,属于简单题,熟悉函数图像的性质是解题关键.
21、(1)1;(2)详见解析;(3)750;(4).
【解析】
(1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;
(2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;
(3)计算足球的百分比,根据样本估计总体,即可解答;
(4)利用概率公式计算即可.
【详解】
(1)30÷15%=1(人).
答:共抽取1名学生进行问卷调查;
故答案为1.
(2)足球的人数为:1﹣60﹣30﹣24﹣36=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°.
如图所示:
(3)3000×0.25=750(人).
答:全校学生喜欢足球运动的人数为750人.
(4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)
共有25种等可能的结果数,选同一项目的结果数为5,
所以甲乙两人中有且选同一项目的概率P(A)=.
【点睛】
本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
22、(1)y=﹣x2+x﹣2;(2)当t=2时,△DAC面积最大为4;(3)符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14).
【解析】
(1)把A与B坐标代入解析式求出a与b的值,即可确定出解析式;(2)如图所示,过D作DE与y轴平行,三角形ACD面积等于DE与OA乘积的一半,表示出S与t的二次函数解析式,利用二次函数性质求出S的最大值即可;(3)存在P点,使得以A,P,M为顶点的三角形与△OAC相似,分当1<m<4时;当m<1时;当m>4时三种情况求出点P坐标即可.
【详解】
(1)∵该抛物线过点A(4,0),B(1,0),
∴将A与B代入解析式得:,解得:,
则此抛物线的解析式为y=﹣x2+x﹣2;
(2)如图,设D点的横坐标为t(0<t<4),则D点的纵坐标为﹣t2+t﹣2,
过D作y轴的平行线交AC于E,
由题意可求得直线AC的解析式为y=x﹣2,
∴E点的坐标为(t,t﹣2),
∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,
∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,
则当t=2时,△DAC面积最大为4;
(3)存在,如图,
设P点的横坐标为m,则P点的纵坐标为﹣m2+m﹣2,
当1<m<4时,AM=4﹣m,PM=﹣m2+m﹣2,
又∵∠COA=∠PMA=90°,
∴①当==2时,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),
解得:m=2或m=4(舍去),
此时P(2,1);
②当==时,△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,
解得:m=4或m=5(均不合题意,舍去)
∴当1<m<4时,P(2,1);
类似地可求出当m>4时,P(5,﹣2);
当m<1时,P(﹣3,﹣14),
综上所述,符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14).
【点睛】
本题综合考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里求三角形的面积及其最大值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,解决相似三角形问题时要注意分类讨论.
23、-5
【解析】
根据分式的运算法则即可求出答案.
【详解】
原式=[+]÷=(+)•x=x﹣1+x﹣2=2x﹣3
由于x≠0且x≠1且x≠﹣2,
所以x=﹣1,
原式=﹣2﹣3=﹣5
【点睛】
本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
24、直角三角形斜边上的中线等于斜边的一半;1.
【解析】
根据直角三角形斜边上的中线等于斜边的一半和等边三角形的判定与性质填空即可.
【详解】
证明:如图,作Rt△ABC的斜边上的中线CD,
则CD=AB=AD(直角三角形斜边上的中线等于斜边的一半),
∵AC=AB,
∴AC=CD=AD 即△ACD是等边三角形,
∴∠A=1°,
∴∠B=90°﹣∠A=30°.
【点睛】
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质,重点在于逻辑思维能力的训练.
2024年浙江省宁波市海曙区中考数学一模试卷: 这是一份2024年浙江省宁波市海曙区中考数学一模试卷,共24页。
2024年浙江省宁波市海曙区中考数学一模试卷附解析: 这是一份2024年浙江省宁波市海曙区中考数学一模试卷附解析,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年浙江省宁波市海曙区兴宁中学中考数学三模试卷(含解析): 这是一份2023年浙江省宁波市海曙区兴宁中学中考数学三模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。