2022届四川省宜宾市翠屏区二片区达标名校初中数学毕业考试模拟冲刺卷含解析
展开这是一份2022届四川省宜宾市翠屏区二片区达标名校初中数学毕业考试模拟冲刺卷含解析,共21页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()
A. B. C. D.
2.一组数据是4,x,5,10,11共五个数,其平均数为7,则这组数据的众数是( )
A.4 B.5 C.10 D.11
3.如图,△ABC内接于⊙O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于( )
A.3:1 B.4:1 C.5:2 D.7:2
4.甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:
次序
第一次
第二次
第三次
第四次
第五次
甲命中的环数(环)
6
7
8
6
8
乙命中的环数(环)
5
10
7
6
7
根据以上数据,下列说法正确的是( )
A.甲的平均成绩大于乙 B.甲、乙成绩的中位数不同
C.甲、乙成绩的众数相同 D.甲的成绩更稳定
5.下列运算正确的是( )
A.a6÷a3=a2 B.3a2•2a=6a3 C.(3a)2=3a2 D.2x2﹣x2=1
6.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于( )
A.2﹣ B.1 C. D.﹣l
7.如图,a∥b,点B在直线b上,且AB⊥BC,∠1=40°,那么∠2的度数( )
A.40° B.50° C.60° D.90°
8.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧交AB于M、AC于N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于D,下列四个结论:
①AD是∠BAC的平分线;
②∠ADC=60°;
③点D在AB的中垂线上;
④S△ACD:S△ACB=1:1.
其中正确的有( )
A.只有①②③ B.只有①②④ C.只有①③④ D.①②③④
9.一元二次方程x2-2x=0的解是( )
A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-2
10.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为( )
A.34° B.56° C.66° D.54°
11.下列运算正确的是( )
A.(﹣2a)3=﹣6a3 B.﹣3a2•4a3=﹣12a5
C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a
12.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是( )
A.25° B.27.5° C.30° D.35°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.
14.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是___.
15.某一时刻,测得一根高1.5m的竹竿在阳光下的影长为2.5m.同时测得旗杆在阳光下的影长为30m,则旗杆的高为__________m.
16.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.
17.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________.
18.A、B两地之间为直线距离且相距600千米,甲开车从A地出发前往B地,乙骑自行车从B地出发前往A地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s(千类)与甲出发的时间t(小时)之间的图象,则当甲第二次与乙相遇时,乙离B地的距离为_____千米.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1.
(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ;
(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).
20.(6分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,,,,,,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。如:若从圈起跳,第一次掷得,就顺时针连续跳个边长,落在圈;若第二次掷得,就从圈开始顺时针连续跳个边长,落得圈;…设游戏者从圈起跳.
小贤随机掷一次骰子,求落回到圈的概率.小南随机掷两次骰子,用列表法求最后落回到圈的概率,并指出他与小贤落回到圈的可能性一样吗?
21.(6分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.
根据统计图的信息解决下列问题:
本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是 ;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?
22.(8分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线A→D→C→B到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,∠A=45°,∠B=30°,桥DC和AB平行.
(1)求桥DC与直线AB的距离;
(2)现在从A地到达B地可比原来少走多少路程?
(以上两问中的结果均精确到0.1km,参考数据:≈1.14,≈1.73)
23.(8分)已知:如图,AB为⊙O的直径,C,D是⊙O直径AB异侧的两点,AC=DC,过点C与⊙O相切的直线CF交弦DB的延长线于点E.
(1)试判断直线DE与CF的位置关系,并说明理由;
(2)若∠A=30°,AB=4,求的长.
24.(10分)尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)
25.(10分)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:出租车的起步价是多少元?当x>3时,求y关于x的函数关系式;若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.
26.(12分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?
27.(12分)某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少学生进行了抽样调查?本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?若该校九年级共有200名学生,如图是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请估计全校六至九年级学生中最喜欢跳绳活动的人数约为多少?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据题中给出的函数图像结合一次函数性质得出a<0,b>0,再由反比例函数图像性质得出c<0,从而可判断二次函数图像开口向下,对称轴:>0,即在y轴的右边,与y轴负半轴相交,从而可得答案.
【详解】
解:∵一次函数y=ax+b图像过一、二、四,
∴a<0,b>0,
又∵反比例 函数y=图像经过二、四象限,
∴c<0,
∴二次函数对称轴:>0,
∴二次函数y=ax2+bx+c图像开口向下,对称轴在y轴的右边,与y轴负半轴相交,
故答案为B.
【点睛】
本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.
2、B
【解析】
试题分析:(4+x+3+30+33)÷3=7,
解得:x=3,
根据众数的定义可得这组数据的众数是3.
故选B.
考点:3.众数;3.算术平均数.
3、A
【解析】
利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.
【详解】
连接DO,交AB于点F,
∵D是的中点,
∴DO⊥AB,AF=BF,
∵AB=8,
∴AF=BF=4,
∴FO是△ABC的中位线,AC∥DO,
∵BC为直径,AB=8,AC=6,
∴BC=10,FO=AC=1,
∴DO=5,
∴DF=5-1=2,
∵AC∥DO,
∴△DEF∽△CEA,
∴,
∴==1.
故选:A.
【点睛】
此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF∽△CEA是解题关键.
4、D
【解析】
根据已知条件中的数据计算出甲、乙的方差,中位数和众数后,再进行比较即可.
【详解】
把甲命中的环数按大小顺序排列为:6,6,7,8,8,故中位数为7;
把乙命中的环数按大小顺序排列为:5,6,7,7,10,故中位数为7;
∴甲、乙成绩的中位数相同,故选项B错误;
根据表格中数据可知,甲的众数是8环,乙的众数是7环,
∴甲、乙成绩的众数不同,故选项C错误;
甲命中的环数的平均数为:(环),
乙命中的环数的平均数为:(环),
∴甲的平均数等于乙的平均数,故选项A错误;
甲的方差=[(6−7)2+(7−7)2+(8−7)2+(6−7)2+(8−7)2]=0.8;
乙的方差=[(5−7)2+(10−7)2+(7−7)2+(6−7)2+(7−7)2]=2.8,
因为2.8>0.8,
所以甲的稳定性大,故选项D正确.
故选D.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.同时还考查了众数的中位数的求法.
5、B
【解析】
A、根据同底数幂的除法法则计算;
B、根据同底数幂的乘法法则计算;
C、根据积的乘方法则进行计算;
D、根据合并同类项法则进行计算.
【详解】
解:A、a6÷a3=a3,故原题错误;
B、3a2•2a=6a3,故原题正确;
C、(3a)2=9a2,故原题错误;
D、2x2﹣x2=x2,故原题错误;
故选B.
【点睛】
考查同底数幂的除法,合并同类项,同底数幂的乘法,积的乘方,熟记它们的运算法则是解题的关键.
6、D
【解析】
∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,
∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,
∴AD⊥BC,B′C′⊥AB,
∴AD=BC=1,AF=FC′=AC′=1,
∴DC′=AC′-AD=-1,
∴图中阴影部分的面积等于:S△AFC′-S△DEC′=×1×1-×( -1)2=-1,
故选D.
【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.
7、B
【解析】
分析:
根据“平行线的性质、平角的定义和垂直的定义”进行分析计算即可.
详解:
∵AB⊥BC,
∴∠ABC=90°,
∵点B在直线b上,
∴∠1+∠ABC+∠3=180°,
∴∠3=180°-∠1-90°=50°,
∵a∥b,
∴∠2=∠3=50°.
故选B.
点睛:熟悉“平行线的性质、平角的定义和垂直的定义”是正确解答本题的关键.
8、D
【解析】
①根据作图过程可判定AD是∠BAC的角平分线;②利用角平分线的定义可推知∠CAD=10°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB是等腰三角形,由等腰三角形的“三合一”性质可以证明点D在AB的中垂线上;④利用10°角所对的直角边是斜边的一半,三角形的面积计算公式来求两个三角形面积之比.
【详解】
①根据作图过程可知AD是∠BAC的角平分线,①正确;②如图,在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°,又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°-∠2=60°,即∠ADC=60°,②正确;③∵∠1=∠B=10°,∴AD=BD,∴点D在AB的中垂线上,③正确;④如图,∵在直角△ACD中,∠2=10°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=AC∙CD=AC∙AD.∴S△ABC=AC∙BC=AC∙AD=AC∙AD,∴S△DAC:S△ABC=AC∙AD:AC∙AD=1:1,④正确.故选D.
【点睛】
本题主要考查尺规作角平分线、角平分线的性质定理、三角形的外角以及等腰三角形的性质,熟练掌握有关知识点是解答的关键.
9、A
【解析】
试题分析:原方程变形为:x(x-1)=0
x1=0,x1=1.
故选A.
考点:解一元二次方程-因式分解法.
10、B
【解析】
试题分析:∵AB∥CD,
∴∠D=∠1=34°,
∵DE⊥CE,
∴∠DEC=90°,
∴∠DCE=180°﹣90°﹣34°=56°.
故选B.
考点:平行线的性质.
11、B
【解析】
先根据同底数幂的乘法法则进行运算即可。
【详解】
A.;故本选项错误;
B. ﹣3a2•4a3=﹣12a5; 故本选项正确;
C.;故本选项错误;
D. 不是同类项不能合并; 故本选项错误;
故选B.
【点睛】
先根据同底数幂的乘法法则, 幂的乘方, 积的乘方, 合并同类项分别求出每个式子的值, 再判断即可.
12、D
【解析】
分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.
详解:∵∠A=60°,∠ADC=85°,
∴∠B=85°-60°=25°,∠CDO=95°,
∴∠AOC=2∠B=50°,
∴∠C=180°-95°-50°=35°
故选D.
点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、a1+1ab+b1=(a+b)1
【解析】
试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)1,
所以a1+1ab+b1=(a+b)1.
点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.
14、.
【解析】
根据题意,画出树状图,然后根据树状图和概率公式求概率即可.
【详解】
解:画树状图得:
共有9种等可能的结果,至少有一辆汽车向左转的有5种情况,
至少有一辆汽车向左转的概率是:.
故答案为:.
【点睛】
此题考查的是求概率问题,掌握树状图的画法和概率公式是解决此题的关键.
15、1.
【解析】
分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.
详解:∵==,解得:旗杆的高度=×30=1.
故答案为1.
点睛:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.
16、1
【解析】
试题分析:此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.首先根据求出外角度数,再利用外角和定理求出边数.
∵正多边形的一个内角是140°,
∴它的外角是:180°-140°=40°,
360°÷40°=1.
故答案为1.
考点:多边形内角与外角.
17、1.738×1
【解析】
解:将1738000用科学记数法表示为1.738×1.故答案为1.738×1.
【点睛】
本题考查科学记数法—表示较大的数,掌握科学计数法的计数形式,难度不大.
18、
【解析】
根据题意和函数图象可以分别求得甲乙的速度,从而可以得到当甲第二次与乙相遇时,乙离B地的距离.
【详解】
设甲的速度为akm/h,乙的速度为bkm/h,
,
解得,,
设第二次甲追上乙的时间为m小时,
100m﹣25(m﹣1)=600,
解得,m=,
∴当甲第二次与乙相遇时,乙离B地的距离为:25×(-1)=千米,
故答案为.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2)这两个数字之和是3的倍数的概率为.
【解析】
(1)在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,根据概率公式可得;(2)用列表法列出所有情况,再计算概率.
【详解】
解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,
∴指针所指扇形中的数字是奇数的概率为,
故答案为;
(2)列表如下:
1
2
3
1
(1,1)
(2,1)
(3,1)
2
(1,2)
(2,2)
(3,2)
3
(1,3)
(2,3)
(3,3)
由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,
所以这两个数字之和是3的倍数的概率为=.
【点睛】
本题考核知识点:求概率. 解题关键点:列出所有情况,熟记概率公式.
20、(1)落回到圈的概率;(2)可能性不一样.
【解析】
(1)由共有6种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;
(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案.
【详解】
(1)掷一次骰子有种等可能的结果,只有掷的时,才会落回到圈,
落回到圈的概率;
(2)列表得:
1
2
3
4
5
6
1
2
3
4
5
6
共有种等可能的结果,当两次掷得的数字之和为的倍数,即时,才可能落回到圈,这种情况共有种,
∴,
∵,
可能性不一样
【点睛】
本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
21、(1)150人;(2)补图见解析;(3)144°;(4)300盒.
【解析】
(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.
(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.
(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.
【详解】
解:(1)本次调查的学生有30÷20%=150人;
(2)C类别人数为150﹣(30+45+15)=60人,
补全条形图如下:
(3)扇形统计图中C对应的中心角度数是360°×=144°
故答案为144°
(4)600×()=300(人),
答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.
【点睛】
本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.
22、(1)桥DC与直线AB的距离是6.0km;(2)现在从A地到达B地可比原来少走的路程是4.1km.
【解析】
(1)过C向AB作垂线构建三角形,求出垂线段的长度即可;(2)过点D向AB作垂线,然后根据解三角形求出AD, CB的长,进而求出现在从A地到达B地可比原来少走的路程.
【详解】
解:(1)作CH⊥AB于点H,如图所示,
∵BC=12km,∠B=30°,
∴km,BH=km,
即桥DC与直线AB的距离是6.0km;
(2)作DM⊥AB于点M,如图所示,
∵桥DC和AB平行,CH=6km,
∴DM=CH=6km,
∵∠DMA=90°,∠B=45°,MH=EF=DC,
∴AD=km,AM=DM=6km,
∴现在从A地到达B地可比原来少走的路程是:(AD+DC+BC)﹣(AM+MH+BH)=AD+DC+BC﹣AM﹣MH﹣BH=AD+BC﹣AM﹣BH=km,
即现在从A地到达B地可比原来少走的路程是4.1km.
【点睛】
做辅助线,构建直角三角形,根据边角关系解三角形,是解答本题的关键.
23、 (1)见解析;(2).
【解析】
(1)先证明△OAC≌△ODC,得出∠1=∠2,则∠2=∠4,故OC∥DE,即可证得DE⊥CF;
(2)根据OA=OC得到∠2=∠3=30°,故∠COD=120°,再根据弧长公式计算即可.
【详解】
解:(1)DE⊥CF.
理由如下:
∵CF为切线,
∴OC⊥CF,
∵CA=CD,OA=OD,OC=OC,
∴△OAC≌△ODC,
∴∠1=∠2,
而∠A=∠4,
∴∠2=∠4,
∴OC∥DE,
∴DE⊥CF;
(2)∵OA=OC,
∴∠1=∠A=30°,
∴∠2=∠3=30°,
∴∠COD=120°,
∴.
【点睛】
本题考查了全等三角形的判定与性质与弧长的计算,解题的关键是熟练的掌握全等三角形的判定与性质与弧长的公式.
24、见解析.
【解析】
分别作线段CD的垂直平分线和∠AOB的角平分线,它们的交点即为点P.
【详解】
如图,点P为所作.
【点睛】
本题考查了作图−应用与设计作图,熟知角平分线的性质与线段垂直平分线的性质是解答此题的关键.
25、 (1)y=2x+2(2)这位乘客乘车的里程是15km
【解析】
(1)根据函数图象可以得出出租车的起步价是8元,设当x>3时,y与x的函数关系式为y=kx+b(k≠0),运用待定系数法就可以求出结论;
(2)将y=32代入(1)的解析式就可以求出x的值.
【详解】
(1)由图象得:
出租车的起步价是8元;
设当x>3时,y与x的函数关系式为y=kx+b(k≠0),由函数图象,得
,
解得:
故y与x的函数关系式为:y=2x+2;
(2)∵32元>8元,
∴当y=32时,
32=2x+2,
x=15
答:这位乘客乘车的里程是15km.
26、1人
【解析】
解:设九年级学生有x人,根据题意,列方程得:
,整理得0.8(x+88)=x,解之得x=1.
经检验x=1是原方程的解.
答:这个学校九年级学生有1人.
设九年级学生有x人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款1936元”可得每个文具包的花费是:元,根据“若多买88个,就可享受8折优惠,同样只需付款1936元”可得每个文具包的花费是:,根据题意可得方程,解方程即可.
27、(1)50(2)36%(3)160
【解析】
(1)根据条形图的意义,将各组人数依次相加即可得到答案;(2)根据条形图可直接得到最喜欢篮球活动的人数,除以(1)中的调查总人数即可得出其所占的百分比;(3)用样本估计总体,先求出九年级占全校总人数的百分比,然后求出全校的总人数;再根据最喜欢跳绳活动的学生所占的百分比,继而可估计出全校学生中最喜欢跳绳活动的人数.
【详解】
(1)该校对名学生进行了抽样调查.
本次调查中,最喜欢篮球活动的有人,
,
∴最喜欢篮球活动的人数占被调查人数的.
(3),
人,
人.
答:估计全校学生中最喜欢跳绳活动的人数约为人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.
相关试卷
这是一份江苏省淮安市淮安区达标名校2022年初中数学毕业考试模拟冲刺卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列四个式子中,正确的是等内容,欢迎下载使用。
这是一份广州市花都区花山重点达标名校2022年初中数学毕业考试模拟冲刺卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份2022届四川省乐至县达标名校初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了答题时请按要求用笔,下列说法中正确的是,不等式组的解集是等内容,欢迎下载使用。