2022年安徽省淮南市潘集区重点名校中考冲刺卷数学试题含解析
展开
这是一份2022年安徽省淮南市潘集区重点名校中考冲刺卷数学试题含解析,共21页。试卷主要包含了如图,将△ABC绕点C,下列计算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为( )。
A.70° B.65° C.50° D.25°
2.若关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在0和1之间(不含0和1),则a的取值范围是( )
A.a<3 B.a>3 C.a<﹣3 D.a>﹣3
3.在实数﹣ ,0.21, ,, ,0.20202中,无理数的个数为( )
A.1 B.2 C.3 D.4
4.如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为( )
A.(-a,-b) B.(-a,-b-1) C.(-a,-b+1) D.(-a,-b-2)
5.如图,在6×4的正方形网格中,△ABC的顶点均为格点,则sin∠ACB=( )
A. B.2 C. D.
6.如图,BC是⊙O的直径,A是⊙O上的一点,∠B=58°,则∠OAC的度数是( )
A.32° B.30° C.38° D.58°
7.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为( )
A.73 B.81 C.91 D.109
8.下列计算正确的是( )
A.2x﹣x=1 B.x2•x3=x6
C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y6
9.如图,将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,连接AA',若∠1=20°,则∠B的度数是( )
A.70° B.65° C.60° D.55°
10.已知关于的方程,下列说法正确的是
A.当时,方程无解
B.当时,方程有一个实数解
C.当时,方程有两个相等的实数解
D.当时,方程总有两个不相等的实数解
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2017的值为____.
12.已知函数,当 时,函数值y随x的增大而增大.
13.如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,若⊙O的半径是5,CD=8,则AE=______.
14.若,,则的值为 ________ .
15.若直角三角形两边分别为6和8,则它内切圆的半径为_____.
16.如图,已知的半径为2,内接于,,则__________.
三、解答题(共8题,共72分)
17.(8分) (1)如图,四边形为正方形,,那么与相等吗?为什么?
(2)如图,在中,,,为边的中点,于点,交于,求的值
(3)如图,中,,为边的中点,于点,交于,若,,求.
18.(8分)如图,点A、B在⊙O上,点O是⊙O的圆心,请你只用无刻度的直尺,分别画出图①和图②中∠A的余角.
(1)图①中,点C在⊙O上;
(2)图②中,点C在⊙O内;
19.(8分)如图,在平面直角坐标系中,反比例函数的图像与边长是6的正方形的两边,分别相交于,两点.若点是边的中点,求反比例函数的解析式和点的坐标;若,求直线的解析式及的面积
20.(8分)如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE=AD,∠EAD=90°,CE交AB于点F,CD=DF.
(1)∠CAD=______度;
(2)求∠CDF的度数;
(3)用等式表示线段CD和CE之间的数量关系,并证明.
21.(8分)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:△ADE≌△CBF;求证:四边形BFDE为矩形.
22.(10分)如图,抛物线y=ax2+bx﹣2经过点A(4,0),B(1,0).
(1)求出抛物线的解析式;
(2)点D是直线AC上方的抛物线上的一点,求△DCA面积的最大值;
(3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
23.(12分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象.
(1)求y与x的函数关系式;
(2)直接写出自变量x的取值范围.
24.如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.
【详解】
解:∵AD∥BC,
∴∠EFB=∠FED=65°,
由折叠的性质知,∠DEF=∠FED′=65°,
∴∠AED′=180°-2∠FED=50°,
故选:C.
【点睛】
此题考查了长方形的性质与折叠的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
2、B
【解析】
试题分析:当x=0时,y=-5;当x=1时,y=a-1,函数与x轴在0和1之间有一个交点,则a-1>0,解得:a>1.
考点:一元二次方程与函数
3、C
【解析】
在实数﹣,0.21, , , ,0.20202中,
根据无理数的定义可得其中无理数有﹣,,,共三个.
故选C.
4、D
【解析】
设点A的坐标是(x,y),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可.
【详解】
根据题意,点A、A′关于点C对称,
设点A的坐标是(x,y),
则 =0, =-1,
解得x=-a,y=-b-2,
∴点A的坐标是(-a,-b-2).
故选D.
【点睛】
本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A、A′关于点C成中心对称是解题的关键
5、C
【解析】
如图,由图可知BD=2、CD=1、BC=,根据sin∠BCA=可得答案.
【详解】
解:如图所示,
∵BD=2、CD=1,
∴BC===,
则sin∠BCA===,
故选C.
【点睛】
本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理.
6、A
【解析】
根据∠B=58°得出∠AOC=116°,半径相等,得出OC=OA,进而得出∠OAC=32°,利用直径和圆周角定理解答即可.
【详解】
解:∵∠B=58°,
∴∠AOC=116°,
∵OA=OC,
∴∠C=∠OAC=32°,
故选:A.
【点睛】
此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
7、C
【解析】
试题解析:第①个图形中一共有3个菱形,3=12+2;
第②个图形中共有7个菱形,7=22+3;
第③个图形中共有13个菱形,13=32+4;
…,
第n个图形中菱形的个数为:n2+n+1;
第⑨个图形中菱形的个数92+9+1=1.
故选C.
考点:图形的变化规律.
8、D
【解析】
根据合并同类项的法则,积的乘方,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解.
【详解】
解:A、2x-x=x,错误;
B、x2•x3=x5,错误;
C、(m-n)2=m2-2mn+n2,错误;
D、(-xy3)2=x2y6,正确;
故选D.
【点睛】
考查了整式的运算能力,对于相关的整式运算法则要求学生很熟练,才能正确求出结果.
9、B
【解析】
根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.
【详解】
∵将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,
∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,
∴∠AA′C=45°,
∵∠1=20°,
∴∠B′A′C=45°-20°=25°,
∴∠A′B′C=90°-25°=65°,
∴∠B=65°.
故选B.
【点睛】
本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.
10、C
【解析】
当时,方程为一元一次方程有唯一解.
当时,方程为一元二次方程,的情况由根的判别式确定:
∵,
∴当时,方程有两个相等的实数解,当且时,方程有两个不相等的实数解.综上所述,说法C正确.故选C.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
把点(m,0)代入y=x2﹣x﹣1,求出m2﹣m=1,代入即可求出答案.
【详解】
∵二次函数y=x2﹣x﹣1的图象与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2017=1+2017=1.
故答案为:1.
【点睛】
本题考查了抛物线与x轴的交点问题,求代数式的值的应用,解答此题的关键是求出m2﹣m=1,难度适中.
12、x≤﹣1.
【解析】
试题分析:∵=,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x≤﹣1时,y随x的增大而增大,故答案为x≤﹣1.
考点:二次函数的性质.
13、2
【解析】
连接OC,由垂径定理知,点E是CD的中点,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可
【详解】
设AE为x,
连接OC,
∵AB是⊙O的直径,弦CD⊥AB于点E,CD=8,
∴∠CEO=90°,CE=DE=4,
由勾股定理得:OC2=CE2+OE2,
52=42+(5-x)2,
解得:x=2,
则AE是2,
故答案为:2
【点睛】
此题考查垂径定理和勾股定理,,解题的关键是利用勾股定理求关于半径的方程.
14、-.
【解析】
分析:已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.
详解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.
故答案为.
点睛:本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键.
15、2或-1
【解析】
根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.
【详解】
若8是直角边,则该三角形的斜边的长为:,
∴内切圆的半径为:;
若8是斜边,则该三角形的另一条直角边的长为:,
∴内切圆的半径为:.
故答案为2或-1.
【点睛】
本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键.
16、
【解析】
分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.
详解:连接AD、AE、OA、OB,
∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,
∴∠ADB=45°,
∴∠AOB=90°,
∵OA=OB=2,
∴AB=2,
故答案为:2.
点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
三、解答题(共8题,共72分)
17、 (1)相等,理由见解析;(2)2;(3).
【解析】
(1)先判断出AB=AD,再利用同角的余角相等,判断出∠ABF=∠DAE,进而得出△ABF≌△DAE,即可得出结论;
(2)构造出正方形,同(1)的方法得出△ABD≌△CBG,进而得出CG=AB,再判断出△AFB∽△CFG,即可得出结论;
(3)先构造出矩形,同(1)的方法得,∠BAD=∠CBP,进而判断出△ABD∽△BCP,即可求出CP,再同(2)的方法判断出△CFP∽△AFB,建立方程即可得出结论.
【详解】
解:(1)BF=AE,理由:
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=∠D=90°,
∴∠BAE+∠DAE=90°,
∵AE⊥BF,
∴∠BAE+∠ABF=90°,
∴∠ABF=∠DAE,
在△ABF和△DAE中,
∴△ABF≌△DAE,
∴BF=AE,
(2) 如图2,
过点A作AM∥BC,过点C作CM∥AB,两线相交于M,延长BF交CM于G,
∴四边形ABCM是平行四边形,
∵∠ABC=90°,
∴▱ABCM是矩形,
∵AB=BC,
∴矩形ABCM是正方形,
∴AB=BC=CM,
同(1)的方法得,△ABD≌△BCG,
∴CG=BD,
∵点D是BC中点,
∴BD=BC=CM,
∴CG=CM=AB,
∵AB∥CM,
∴△AFB∽△CFG,
∴
(3) 如图3,
在Rt△ABC中,AB=3,BC=4,
∴AC=5,
∵点D是BC中点,
∴BD=BC=2,
过点A作AN∥BC,过点C作CN∥AB,两线相交于N,延长BF交CN于P,
∴四边形ABCN是平行四边形,
∵∠ABC=90°,∴▱ABCN是矩形,
同(1)的方法得,∠BAD=∠CBP,
∵∠ABD=∠BCP=90°,
∴△ABD∽△BCP,
∴
∴
∴CP=
同(2)的方法,△CFP∽△AFB,
∴
∴
∴CF=.
【点睛】
本题是四边形综合题,主要考查了正方形的性质和判定,平行四边形的判定,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,构造出(1)题的图形,是解本题的关键.
18、图形见解析
【解析】试题分析:(1)根据同弧所对的圆周角相等和直径所对的圆周角为直角画图即可;(2)延长AC交⊙O于点E ,利用(1)的方法画图即可.
试题解析:
如图①∠DBC就是所求的角;
如图②∠FBE就是所求的角
19、(1),N(3,6);(2)y=-x+2,S△OMN=3.
【解析】
(1)求出点M坐标,利用待定系数法即可求得反比例函数的解析式,把N点的纵坐标代入解析式即可求得横坐标;
(2)根据M点的坐标与反比例函数的解析式,求得N点的坐标,利用待定系数法求得直线MN的解析式,根据△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN即可得到答案.
【详解】
解:(1)∵点M是AB边的中点,∴M(6,3).
∵反比例函数y=经过点M,∴3=.∴k=1.
∴反比例函数的解析式为y=.
当y=6时,x=3,∴N(3,6).
(2)由题意,知M(6,2),N(2,6).
设直线MN的解析式为y=ax+b,则
,
解得,
∴直线MN的解析式为y=-x+2.
∴S△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN=36-6-6-2=3.
【点睛】
本题考查了反比例函数的系数k的几何意义,待定系数法求一次函数的解析式和反比例函数的解析式,正方形的性质,求得M、N点的坐标是解题的关键.
20、(1)45;(2)90°;(3)见解析.
【解析】
(1)根据等腰三角形三线合一可得结论;
(2)连接DB,先证明△BAD≌△CAD,得BD=CD=DF,则∠DBA=∠DFB=∠DCA,根据四边形内角和与平角的定义可得∠BAC+∠CDF=180°,所以∠CDF=90°;
(3)证明△EAF≌△DAF,得DF=EF,由②可知,可得结论.
【详解】
(1)解:∵AB=AC,M是BC的中点,
∴AM⊥BC,∠BAD=∠CAD,
∵∠BAC=90°,
∴∠CAD=45°,
故答案为:45
(2)解:如图,连接DB.
∵AB=AC,∠BAC=90°,M是BC的中点,
∴∠BAD=∠CAD=45°.
∴△BAD≌△CAD.
∴∠DBA=∠DCA,BD=CD.
∵CD=DF,
∴BD=DF.
∴∠DBA=∠DFB=∠DCA.
∵∠DFB+∠DFA=180°,
∴∠DCA+∠DFA=180°.
∴∠BAC+∠CDF=180°.
∴∠CDF=90°.
(3).
证明:∵∠EAD=90°,
∴∠EAF=∠DAF=45°.
∵AD=AE,
∴△EAF≌△DAF.
∴DF=EF.
由②可知,.
∴.
【点睛】
此题考查等腰三角形的性质,全等三角形的判定与性质,直角三角形的性质,解题关键在于掌握判定定理及性质.
21、(1)证明见解析;(2)证明见解析.
【解析】
(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;
(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.
【详解】
解:(1)∵DE⊥AB,BF⊥CD,
∴∠AED=∠CFB=90°,
∵四边形ABCD为平行四边形,
∴AD=BC,∠A=∠C,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(AAS);
(2)∵四边形ABCD为平行四边形,
∴CD∥AB,
∴∠CDE+∠DEB=180°,
∵∠DEB=90°,
∴∠CDE=90°,
∴∠CDE=∠DEB=∠BFD=90°,
则四边形BFDE为矩形.
【点睛】
本题考查1.矩形的判定;2.全等三角形的判定与性质;3.平行四边形的性质.
22、(1)y=﹣x2+x﹣2;(2)当t=2时,△DAC面积最大为4;(3)符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14).
【解析】
(1)把A与B坐标代入解析式求出a与b的值,即可确定出解析式;(2)如图所示,过D作DE与y轴平行,三角形ACD面积等于DE与OA乘积的一半,表示出S与t的二次函数解析式,利用二次函数性质求出S的最大值即可;(3)存在P点,使得以A,P,M为顶点的三角形与△OAC相似,分当1<m<4时;当m<1时;当m>4时三种情况求出点P坐标即可.
【详解】
(1)∵该抛物线过点A(4,0),B(1,0),
∴将A与B代入解析式得:,解得:,
则此抛物线的解析式为y=﹣x2+x﹣2;
(2)如图,设D点的横坐标为t(0<t<4),则D点的纵坐标为﹣t2+t﹣2,
过D作y轴的平行线交AC于E,
由题意可求得直线AC的解析式为y=x﹣2,
∴E点的坐标为(t,t﹣2),
∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,
∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,
则当t=2时,△DAC面积最大为4;
(3)存在,如图,
设P点的横坐标为m,则P点的纵坐标为﹣m2+m﹣2,
当1<m<4时,AM=4﹣m,PM=﹣m2+m﹣2,
又∵∠COA=∠PMA=90°,
∴①当==2时,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),
解得:m=2或m=4(舍去),
此时P(2,1);
②当==时,△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,
解得:m=4或m=5(均不合题意,舍去)
∴当1<m<4时,P(2,1);
类似地可求出当m>4时,P(5,﹣2);
当m<1时,P(﹣3,﹣14),
综上所述,符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14).
【点睛】
本题综合考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里求三角形的面积及其最大值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,解决相似三角形问题时要注意分类讨论.
23、(1)y=-2x+31,(2)20≤x≤1
【解析】
试题分析:(1)根据函数图象经过点(20,300)和点(30,280),利用待定系数法即可求出y与x的函数关系式;
(2)根据试销期间销售单价不低于成本单价,也不高于每千克1元,结合草莓的成本价即可得出x的取值范围.
试题解析:
(1)设y与x的函数关系式为y=kx+b,根据题意,得:
解得:
∴y与x的函数解析式为y=-2x+31,
(2) ∵试销期间销售单价不低于成本单价,也不高于每千克1元,且草莓的成本为每千克20元,
∴自变量x的取值范围是20≤x≤1.
24、(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米.
【解析】
试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,高为DE,可以求得DE的高度;
(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度.
试题解析:(1)∵在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,
∴,
设DE=5x米,则EC=12x米,
∴(5x)2+(12x)2=132,
解得:x=1,
∴5x=5,12x=12,
即DE=5米,EC=12米,
故斜坡CD的高度DE是5米;
(2)过点D作AB的垂线,垂足为H,设DH的长为x,
由题意可知∠BDH=45°,
∴BH=DH=x,DE=5,
在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,
∵tan64°=,
∴2=,
解得,x=29,AB=x+5=34,
即大楼AB的高度是34米.
相关试卷
这是一份2024年安徽省淮南市潘集区中考四模数学试题(原卷版+解析版),文件包含2024年安徽省淮南市潘集区中考四模数学试题原卷版docx、2024年安徽省淮南市潘集区中考四模数学试题解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
这是一份安徽省淮南市潘集区2023-2024学年九年级上学期期中数学试题(含解析),共27页。试卷主要包含了全卷共三道大题,总分120分,下列命题正确的有,已知关于x的一元二次方程等内容,欢迎下载使用。
这是一份安徽省怀远县重点达标名校2021-2022学年中考冲刺卷数学试题含解析,共21页。试卷主要包含了不等式组的解集是,如图,与∠1是内错角的是等内容,欢迎下载使用。