年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届重庆市巴南区鱼洞南区学校中考数学五模试卷含解析

    2022届重庆市巴南区鱼洞南区学校中考数学五模试卷含解析第1页
    2022届重庆市巴南区鱼洞南区学校中考数学五模试卷含解析第2页
    2022届重庆市巴南区鱼洞南区学校中考数学五模试卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届重庆市巴南区鱼洞南区学校中考数学五模试卷含解析

    展开

    这是一份2022届重庆市巴南区鱼洞南区学校中考数学五模试卷含解析,共19页。试卷主要包含了|–|的倒数是,sin45°的值等于等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.某商品的进价为每件元.当售价为每件元时,每星期可卖出件,现需降价处理,为占有市场份额,且经市场调查:每降价元,每星期可多卖出件.现在要使利润为元,每件商品应降价( )元.
    A.3 B.2.5 C.2 D.5
    2.已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx-k的图象不经过(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    3.方程的解是( ).
    A. B. C. D.
    4.|–|的倒数是( )
    A.–2 B.– C. D.2
    5.已知二次函数 图象上部分点的坐标对应值列表如下:
    x


    -3
    -2
    -1
    0
    1
    2

    y


    2
    -1
    -2
    -1
    2
    7

    则该函数图象的对称轴是( )
    A.x=-3 B.x=-2 C.x=-1 D.x=0
    6.小明和小亮按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列说法中正确的是( )

    A.小明不是胜就是输,所以小明胜的概率为 B.小明胜的概率是,所以输的概率是
    C.两人出相同手势的概率为 D.小明胜的概率和小亮胜的概率一样
    7.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是(  )

    A.15° B.22.5° C.30° D.45°
    8.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为(  )

    A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm
    9.将2001×1999变形正确的是(  )
    A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+1
    10.sin45°的值等于(  )
    A. B.1 C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是_____.

    12.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为____.
    13.在一次数学测试中,同年级人数相同的甲、乙两个班的成绩统计如下表:
    班级
    平均分
    中位数
    方差
    甲班



    乙班



    数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下:
    这次数学测试成绩中,甲、乙两个班的平均水平相同;
    甲班学生中数学成绩95分及以上的人数少;
    乙班学生的数学成绩比较整齐,分化较小.
    上述评估中,正确的是______填序号
    14.如果a2﹣b2=8,且a+b=4,那么a﹣b的值是__.
    15.观察下列等式:
    第1个等式:a1=;
    第2个等式:a2=;
    第3个等式:a3=;

    请按以上规律解答下列问题:
    (1)列出第5个等式:a5=_____;
    (2)求a1+a2+a3+…+an=,那么n的值为_____.
    16.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C.小明发现古镇C恰好在A地的正北方向,则B、C两地的距离是_____千米.

    17.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为_____.

    三、解答题(共7小题,满分69分)
    18.(10分)为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.若用户的月用水量不超过15吨,每吨收水费4元;用户的月用水量超过15吨,超过15吨的部分,按每吨6元收费.
    (I)根据题意,填写下表:
    月用水量(吨/户)
    4
    10
    16
    ……
    应收水费(元/户)
       
    40
       
    ……
    (II)设一户居民的月用水量为x吨,应收水费y元,写出y关于x的函数关系式;
    (III)已知用户甲上个月比用户乙多用水6吨,两户共收水费126元,求他们上个月分别用水多少吨?
    19.(5分)如图,是菱形的对角线,,(1)请用尺规作图法,作的垂直平分线,垂足为,交于;(不要求写作法,保留作图痕迹)在(1)条件下,连接,求的度数.

    20.(8分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本). 若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价(元)取整数,用(元)表示该店每天的利润.若每份套餐售价不超过10元.
    ①试写出与的函数关系式;
    ②若要使该店每天的利润不少于800元,则每份套餐的售价应不低于多少元?该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?若不能,请说明理由.
    21.(10分)如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,
    (1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积.
    (2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,
    ①求证:BE′+BF=2,
    ②求出四边形OE′BF的面积.

    22.(10分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.证明:DE为⊙O的切线;连接OE,若BC=4,求△OEC的面积.

    23.(12分)解分式方程: -1=
    24.(14分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.

    请根据图中的信息,回答下列问题:
    (1)这次抽样调查中共调查了  人;
    (2)请补全条形统计图;
    (3)扇形统计图中18﹣23岁部分的圆心角的度数是  ;
    (4)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    设售价为x元时,每星期盈利为6125元,那么每件利润为(x-40),原来售价为每件60元时,每星期可卖出300件,所以现在可以卖出[300+20(60-x)]件,然后根据盈利为6120元即可列出方程解决问题.
    【详解】
    解:设售价为x元时,每星期盈利为6120元,
    由题意得(x-40)[300+20(60-x)]=6120,
    解得:x1=57,x2=1,
    由已知,要多占市场份额,故销售量要尽量大,即售价要低,故舍去x2=1.
    ∴每件商品应降价60-57=3元.
    故选:A.
    【点睛】
    本题考查了一元二次方程的应用.此题找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.
    2、B
    【解析】
    试题分析:当x1<x2<0时,y1>y2,可判定k>0,所以﹣k<0,即可判定一次函数y=kx﹣k的图象经过第一、三、四象限,所以不经过第二象限,故答案选B.
    考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系.
    3、B
    【解析】
    直接解分式方程,注意要验根.
    【详解】
    解:=0,
    方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,
    解这个一元一次方程,得:x=,
    经检验,x=是原方程的解.
    故选B.
    【点睛】
    本题考查了解分式方程,解分式方程不要忘记验根.
    4、D
    【解析】
    根据绝对值的性质,可化简绝对值,根据倒数的意义,可得答案.
    【详解】
    |−|=,的倒数是2;
    ∴|−|的倒数是2,
    故选D.
    【点睛】
    本题考查了实数的性质,分子分母交换位置是求一个数倒数的关键.
    5、C
    【解析】
    由当x=-2和x=0时,y的值相等,利用二次函数图象的对称性即可求出对称轴.
    【详解】
    解:∵x=-2和x=0时,y的值相等,
    ∴二次函数的对称轴为,
    故答案为:C.
    【点睛】
    本题考查了二次函数的性质,利用二次函数图象的对称性找出对称轴是解题的关键.
    6、D
    【解析】
    利用概率公式,一一判断即可解决问题.
    【详解】
    A、错误.小明还有可能是平;
    B、错误、小明胜的概率是 ,所以输的概率是也是;
    C、错误.两人出相同手势的概率为;
    D、正确.小明胜的概率和小亮胜的概率一样,概率都是;
    故选D.
    【点睛】
    本题考查列表法、树状图等知识.用到的知识点为:概率=所求情况数与总情况数之比.
    7、A
    【解析】
    试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.

    考点:平行线的性质.
    8、B
    【解析】
    【分析】由已知可证△ABO∽CDO,故 ,即.
    【详解】由已知可得,△ABO∽CDO,
    所以, ,
    所以,,
    所以,AB=5.4
    故选B
    【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质.
    9、A
    【解析】
    原式变形后,利用平方差公式计算即可得出答案.
    【详解】
    解:原式=(2000+1)×(2000-1)=20002-1,
    故选A.
    【点睛】
    此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
    10、D
    【解析】
    根据特殊角的三角函数值得出即可.
    【详解】
    解:sin45°=,
    故选:D.
    【点睛】
    本题考查了特殊角的三角函数的应用,能熟记特殊角的三角函数值是解此题的关键,难度适中.

    二、填空题(共7小题,每小题3分,满分21分)
    11、61
    【解析】
    分析: 要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.
    详解: 如图①:AM2=AB2+BM2=16+(5+2)2=65;
    如图②:AM2=AC2+CM2=92+4=85;
    如图:AM2=52+(4+2)2=61.

    ∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.
    故答案为:61.
    点睛: 此题主要考查了平面展开图,求最短路径,解决此类题目的关键是把长方体的侧面展开“化立体为平面”,用勾股定理解决.
    12、
    【解析】
    解:根据题意可得:列表如下

    红1
    红2
    黄1
    黄2
    黄3
    红1

    红1,红2
    红1,黄1
    红1,黄2
    红1,黄3
    红2
    红2,红1

    红2,黄1
    红2,黄2
    红2,黄3
    黄1
    黄1,红1
    黄1,红2

    黄1,黄2
    黄1,黄3
    黄2
    黄2,红1
    黄2,红2
    黄2,黄1

    黄2,黄3
    黄3
    黄3,红1
    黄3,红2
    黄3,黄1
    黄3,黄2

    共有20种所有等可能的结果,其中两个颜色相同的有8种情况,
    故摸出两个颜色相同的小球的概率为.
    【点睛】
    本题考查列表法和树状图法,掌握步骤正确列表是解题关键.
    13、
    【解析】
    根据平均数、中位数和方差的意义分别对每一项进行解答,即可得出答案.
    【详解】
    解:∵甲班的平均成绩是92.5分,乙班的平均成绩是92.5分,
    ∴这次数学测试成绩中,甲、乙两个班的平均水平相同;
    故正确;
    ∵甲班的中位数是95.5分,乙班的中位数是90.5分,
    甲班学生中数学成绩95分及以上的人数多,
    故错误;
    ∵甲班的方差是41.25分,乙班的方差是36.06分,
    甲班的方差大于乙班的方差,
    乙班学生的数学成绩比较整齐,分化较小;
    故正确;
    上述评估中,正确的是;
    故答案为:.
    【点睛】
    本题考查平均数、中位数和方差,平均数表示一组数据的平均程度中位数是将一组数据从小到大或从大到小重新排列后,最中间的那个数或最中间两个数的平均数;方差是用来衡量一组数据波动大小的量.
    14、1.
    【解析】
    根据(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案.
    【详解】
    ∵a1-b1=8,
    ∴(a+b)(a-b)=8,
    ∵a+b=4,
    ∴a-b=1,
    故答案是:1.
    【点睛】
    考查了平方差,关键是掌握(a+b)(a-b)=a1-b1.
    15、 49
    【解析】
    (1)观察等式可得 然后根据此规律就可解决问题;
    (2)只需运用以上规律,采用拆项相消法即可解决问题.
    【详解】
    (1)观察等式,可得以下规律:,

    (2)

    解得:n=49.
    故答案为:49.
    【点睛】
    属于规律型:数字的变化类,观察题目,找出题目中数字的变化规律是解题的关键.
    16、3
    【解析】
    作BE⊥AC于E,根据正弦的定义求出BE,再根据正弦的定义计算即可.
    【详解】
    解:作BE⊥AC于E,

    在Rt△ABE中,sin∠BAC=,
    ∴BE=AB•sin∠BAC=,
    由题意得,∠C=45°,
    ∴BC==(千米),
    故答案为3.
    【点睛】
    本题考查的是解直角三角形的应用-方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.
    17、或
    【解析】
    试题分析:如图4所示;点E与点C′重合时.在Rt△ABC中,BC==4.由翻折的性质可知;AE=AC=3、DC=DE.则EB=2.设DC=ED=x,则BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=.∴DE=.如图2所示:∠EDB=90时.由翻折的性质可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=4.∵DE∥AC,∴△BDE∽△BCA.∴,即.解得:DE=.点D在CB上运动,∠DBC′<90°,故∠DBC′不可能为直角.

    考点:翻折变换(折叠问题).

    三、解答题(共7小题,满分69分)
    18、(Ⅰ)16;66;(Ⅱ)当x≤15时,y=4x;当x>15时,y=6x﹣30;(Ⅲ)居民甲上月用水量为18吨,居民乙用水12吨
    【解析】
    (Ⅰ)根据题意计算即可;
    (Ⅱ)根据分段函数解答即可;
    (Ⅲ)根据题意,可以分段利用方程或方程组解决用水量问题.
    【详解】
    解:(Ⅰ)当月用水量为4吨时,应收水费=4×4=16元;
    当月用水量为16吨时,应收水费=15×4+1×6=66元;
    故答案为16;66;
    (Ⅱ)当x≤15时,y=4x;
    当x>15时,y=15×4+(x﹣15)×6=6x﹣30;
    (Ⅲ)设居民甲上月用水量为X吨,居民乙用水(X﹣6)吨.
    由题意:X﹣6<15且X>15时,4(X﹣6)+15×4+(X﹣15)×6=126
    X=18,
    ∴居民甲上月用水量为18吨,居民乙用水12吨.
    【点睛】
    本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意在实际问题中,利用方程或方程组是解决问题的常用方法.
    19、(1)答案见解析;(2)45°.
    【解析】
    (1)分别以A、B为圆心,大于长为半径画弧,过两弧的交点作直线即可;
    (2)根据∠DBF=∠ABD﹣∠ABF计算即可;
    【详解】
    (1)如图所示,直线EF即为所求;

    (2)∵四边形ABCD是菱形,
    ∴∠ABD=∠DBC∠ABC=75°,DC∥AB,∠A=∠C,
    ∴∠ABC=150°,∠ABC+∠C=180°,
    ∴∠C=∠A=30°.
    ∵EF垂直平分线段AB,
    ∴AF=FB,
    ∴∠A=∠FBA=30°,
    ∴∠DBF=∠ABD﹣∠FBE=45°.
    【点睛】
    本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题.
    20、(1)①y=400x﹣1.(5<x≤10);②9元或10元;(2)能, 11元.
    【解析】
    (1)、根据利润=(售价-进价)×数量-固定支出列出函数表达式;(2)、根据题意得出不等式,从而得出答案;(2)、根据题意得出函数关系式,然后将y=1560代入函数解析式,从而求出x的值得出答案.
    【详解】
    解:(1)①y=400(x﹣5)﹣2.(5<x≤10),
    ②依题意得:400(x﹣5)﹣2≥800, 解得:x≥8.5,
    ∵5<x≤10,且每份套餐的售价x(元)取整数, ∴每份套餐的售价应不低于9元.
    (2)依题意可知:每份套餐售价提高到10元以上时,
    y=(x﹣5)[400﹣40(x﹣10)]﹣2,
    当y=1560时, (x﹣5)[400﹣40(x﹣10)]﹣2=1560,
    解得:x1=11,x2=14,为了保证净收入又能吸引顾客,应取x1=11,即x2=14不符合题意.
    故该套餐售价应定为11元.
    【点睛】
    本题主要考查的是一次函数和二次函数的实际应用问题,属于中等难度的题型.理解题意,列出关系式是解决这个问题的关键.
    21、 (1);(2)①2,②
    【解析】
    分析:(1)重合部分是等边三角形,计算出边长即可.
    ①证明:在图3中,取AB中点E,证明≌,即可得到
    ,
    ②由①知,在旋转过程60°中始终有≌四边形的面积等于 =.
    详解:(1)∵四边形为菱形,

    ∴为等边三角形

    ∵AD//

    ∴为等边三角形,边长
    ∴重合部分的面积:
    ①证明:在图3中,取AB中点E,

    由上题知,

    又∵
    ∴≌,

    ∴,
    ②由①知,在旋转过程60°中始终有≌
    ∴四边形的面积等于=.
    点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.
    22、 (1)证明见解析;(2)
    【解析】
    试题分析:(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;
    (2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC的面积,继而求得答案.
    试题解析:(1)证明:连接OD,CD,

    ∵BC为⊙O直径,
    ∴∠BDC=90°,
    即CD⊥AB,
    ∵△ABC是等腰三角形,
    ∴AD=BD,
    ∵OB=OC,
    ∴OD是△ABC的中位线,
    ∴OD∥AC,
    ∵DE⊥AC,
    ∴OD⊥DE,
    ∵D点在⊙O上,
    ∴DE为⊙O的切线;
    (2)解:∵∠A=∠B=30°,BC=4,
    ∴CD=BC=2,BD=BC•cos30°=2,
    ∴AD=BD=2,AB=2BD=4,
    ∴S△ABC=AB•CD=×4×2=4,
    ∵DE⊥AC,
    ∴DE=AD=×2=,
    AE=AD•cos30°=3,
    ∴S△ODE=OD•DE=×2×=,
    S△ADE=AE•DE=××3=,
    ∵S△BOD=S△BCD=×S△ABC=×4=,
    ∴S△OEC=S△ABC-S△BOD-S△ODE-S△ADE=4---=.
    23、7
    【解析】
    根据分式的性质及等式的性质进行去分母,去括号,移项,合并同类项,未知数系数化为1即可.
    【详解】
    -1=
    3-(x-3)=-1
    3-x+3=-1
    x=7
    【点睛】
    此题主要考查分式方程的求解,解题的关键是正确去掉分母.
    24、 (1)1500;(2)见解析;(3)108°;(3)12~23岁的人数为400万
    【解析】
    试题分析:(1)根据30-35岁的人数和所占的百分比求调查的人数;
    (2)从调查的总人数中减去已知的三组的人数,即可得到12-17岁的人数,据此补全条形统计图;
    (3)先计算18-23岁的人数占调查总人数的百分比,再计算这一组所对应的圆心角的度数;
    (4)先计算调查中12﹣23岁的人数所占的百分比,再求网瘾人数约为2000万中的12﹣23岁的人数.
    试题解析:解:(1)结合条形统计图和扇形统计图可知,30-35岁的人数为330人,所占的百分比为22%,所以调查的总人数为330÷22%=1500人.
    故答案为1500 ;
    (2)1500-450-420-330=300人.
    补全的条形统计图如图:

    (3)18-23岁这一组所对应的圆心角的度数为360×=108°.
    故答案为108° ;
    (4)(300+450)÷1500=50%,.
    考点:条形统计图;扇形统计图.

    相关试卷

    重庆市巴南区鱼洞南区学校2023年数学八上期末达标测试试题【含解析】:

    这是一份重庆市巴南区鱼洞南区学校2023年数学八上期末达标测试试题【含解析】,共19页。试卷主要包含了答题时请按要求用笔,下列命题是假命题的是等内容,欢迎下载使用。

    重庆市巴南区鱼洞南区学校2023年数学八年级第一学期期末联考模拟试题【含解析】:

    这是一份重庆市巴南区鱼洞南区学校2023年数学八年级第一学期期末联考模拟试题【含解析】,共20页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。

    重庆市巴南区鱼洞南区学校2023-2024学年数学八上期末联考试题【含解析】:

    这是一份重庆市巴南区鱼洞南区学校2023-2024学年数学八上期末联考试题【含解析】,共18页。试卷主要包含了下列计算正确的是,x,y满足方程,则的值为,《孙子算经》中有一道题,原文是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map