2022年北京市东城区五十中学中考数学模拟预测试卷含解析
展开1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列调查中,最适合采用全面调查(普查)的是( )
A.对我市中学生每周课外阅读时间情况的调查
B.对我市市民知晓“礼让行人”交通新规情况的调查
C.对我市中学生观看电影《厉害了,我的国》情况的调查
D.对我国首艘国产航母002型各零部件质量情况的调查
2.已知3a﹣2b=1,则代数式5﹣6a+4b的值是( )
A.4 B.3 C.﹣1 D.﹣3
3.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=3 cm,则∠BAC的度数为( )
A.15° B.75°或15° C.105°或15° D.75°或105°
4.函数y=中,x的取值范围是( )
A.x≠0B.x>﹣2C.x<﹣2D.x≠﹣2
5.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是( )
A.a﹣d=b﹣cB.a+c+2=b+dC.a+b+14=c+dD.a+d=b+c
6.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是( )
A.①②④B.①②⑤C.②③④D.③④⑤
7.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是( )
A.m≥1B.m≤1C.m>1D.m<1
8.如图,要使□ABCD成为矩形,需添加的条件是()
A.AB=BCB.∠ABC=90°C.AC⊥BDD.∠1=∠2
9.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )
A.B.C.D.
10.用加减法解方程组时,若要求消去,则应( )
A.B.C.D.
二、填空题(共7小题,每小题3分,满分21分)
11.某商品原价100元,连续两次涨价后,售价为144元.若平均每次增长率为,则__________.
12.如图,已知正方形边长为4,以A为圆心,AB为半径作弧BD,M是BC的中点,过点M作EM⊥BC交弧BD于点E,则弧BE的长为_____.
13.如图,▱ABCD中,AC⊥CD,以C为圆心,CA为半径作圆弧交BC于E,交CD的延长线于点F,以AC上一点O为圆心OA为半径的圆与BC相切于点M,交AD于点N.若AC=9cm,OA=3cm,则图中阴影部分的面积为_____cm1.
14.有一组数据:2,3,5,5,x,它们的平均数是10,则这组数据的众数是 .
15.当a<0,b>0时.化简:=_____.
16.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于_____________.
17.从﹣2,﹣1,2,0这四个数中任取两个不同的数作为点的坐标,该点不在第三象限的概率是_____.
三、解答题(共7小题,满分69分)
18.(10分)观察猜想:
在Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把△ABD绕点A逆时针旋转90°,点D落在点E处,如图①所示,则线段CE和线段BD的数量关系是 ,位置关系是 .探究证明:
在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.拓展延伸:
如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他条件不变,过点D作DF⊥AD交CE于点F,请直接写出线段CF长度的最大值.
19.(5分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D求证:AC∥DE;若BF=13,EC=5,求BC的长.
20.(8分)某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.商场第一次购入的空调每台进价是多少元?商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?
21.(10分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.
22.(10分)已知:正方形绕点顺时针旋转至正方形,连接.如图,求证:;如图,延长交于,延长交于,在不添加任何辅助线的情况下,请直接写出如图中的四个角,使写出的每一个角的大小都等于旋转角.
23.(12分)如图,在平面直角坐标系中,一次函数y=﹣x+2的图象交x轴于点P,二次函数y=﹣x2+x+m的图象与x轴的交点为(x1,0)、(x2,0),且+=17
(1)求二次函数的解析式和该二次函数图象的顶点的坐标.
(2)若二次函数y=﹣x2+x+m的图象与一次函数y=﹣x+2的图象交于A、B两点(点A在点B的左侧),在x轴上是否存在点M,使得△MAB是以∠ABM为直角的直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
24.(14分)解不等式组并在数轴上表示解集.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.由此,对各选项进行辨析即可.
【详解】
A、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;
B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;
C、对我市中学生观看电影《厉害了,我的国》情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;
D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;
故选D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
2、B
【解析】
先变形,再整体代入,即可求出答案.
【详解】
∵3a﹣2b=1,
∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,
故选:B.
【点睛】
本题考查了求代数式的值,能够整体代入是解此题的关键.
3、C
【解析】
解:如图1.∵AD为直径,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=3,∠CAD=45°,则∠BAC=105°;
如图2,.∵AD为直径,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=3,∠CAD=45°,则∠BAC=15°.故选C.
点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用.
4、D
【解析】
试题分析:由分式有意义的条件得出x+1≠0,解得x≠﹣1.
故选D.
点睛:本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.
5、A
【解析】
观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.
【详解】
解:依题意,得:b=a+1,c=a+7,d=a+1.
A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,
∴a﹣d≠b﹣c,选项A符合题意;
B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,
∴a+c+2=b+d,选项B不符合题意;
C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,
∴a+b+14=c+d,选项C不符合题意;
D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,
∴a+d=b+c,选项D不符合题意.
故选:A.
【点睛】
考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.
6、A
【解析】
由抛物线的开口方向判断a与2的关系,由抛物线与y轴的交点判断c与2的关系,然后根据对称轴判定b与2的关系以及2a+b=2;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>2.
【详解】
①∵对称轴在y轴右侧,
∴a、b异号,
∴ab<2,故正确;
②∵对称轴
∴2a+b=2;故正确;
③∵2a+b=2,
∴b=﹣2a,
∵当x=﹣1时,y=a﹣b+c<2,
∴a﹣(﹣2a)+c=3a+c<2,故错误;
④根据图示知,当m=1时,有最大值;
当m≠1时,有am2+bm+c≤a+b+c,
所以a+b≥m(am+b)(m为实数).
故正确.
⑤如图,当﹣1<x<3时,y不只是大于2.
故错误.
故选A.
【点睛】
本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定
抛物线的开口方向,当a>2时,抛物线向上开口;当a<2时,抛物线向下开口;②一次项
系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>2),对称轴在y轴
左; 当a与b异号时(即ab<2),对称轴在y轴右.(简称:左同右异)③常数项c决定抛
物线与y轴交点,抛物线与y轴交于(2,c).
7、D
【解析】
分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.
详解:∵方程有两个不相同的实数根,
∴
解得:m<1.
故选D.
点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
8、B
【解析】
根据一个角是90度的平行四边形是矩形进行选择即可.
【详解】
解:A、是邻边相等,可判定平行四边形ABCD是菱形;
B、是一内角等于90°,可判断平行四边形ABCD成为矩形;
C、是对角线互相垂直,可判定平行四边形ABCD是菱形;
D、是对角线平分对角,可判断平行四边形ABCD成为菱形;
故选:B.
【点睛】
本题主要应用的知识点为:矩形的判定. ①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.
9、A
【解析】
根据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决.
【详解】
由题意可得,
,
故选A.
【点睛】
本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
10、C
【解析】
利用加减消元法消去y即可.
【详解】
用加减法解方程组时,若要求消去y,则应①×5+②×3,
故选C
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
二、填空题(共7小题,每小题3分,满分21分)
11、20%.
【解析】
试题分析:根据原价为100元,连续两次涨价x后,现价为144元,根据增长率的求解方法,列方程求x.
试题解析:依题意,有:100(1+x)2=144,
1+x=±1.2,
解得:x=20%或-2.2(舍去).
考点:一元二次方程的应用.
12、
【解析】
延长ME交AD于F,由M是BC的中点,MF⊥AD,得到F点为AD的中点,即AF=AD,则∠AEF=30°,得到∠BAE=30°,再利用弧长公式计算出弧BE的长.
【详解】
延长ME交AD于F,如图,∵M是BC的中点,MF⊥AD,∴F点为AD的中点,即AF=AD.
又∵AE=AD,∴AE=2AF,∴∠AEF=30°,∴∠BAE=30°,∴弧BE的长==.
故答案为.
【点睛】
本题考查了弧长公式:l=.也考查了在直角三角形中,一直角边是斜边的一半,这条直角边所对的角为30度.
13、11π﹣.
【解析】
阴影部分的面积=扇形ECF的面积-△ACD的面积-△OCM的面积-扇形AOM的面积-弓形AN的面积.
【详解】
解:连接OM,ON.
∴OM=3,OC=6,
∴
∴
∴扇形ECF的面积
△ACD的面积
扇形AOM的面积
弓形AN的面积
△OCM的面积
∴阴影部分的面积=扇形ECF的面积−△ACD的面积−△OCM的面积−扇形AOM的面积−弓形AN的面积
故答案为.
【点睛】
考查不规则图形的面积的计算,掌握扇形的面积公式是解题的关键.
14、1
【解析】
根据平均数为10求出x的值,再由众数的定义可得出答案.
解:由题意得,(2+3+1+1+x)=10,
解得:x=31,
这组数据中1出现的次数最多,则这组数据的众数为1.
故答案为1.
15、
【解析】
分析:按照二次根式的相关运算法则和性质进行计算即可.
详解:
∵,
∴.
故答案为:.
点睛:熟记二次根式的以下性质是解答本题的关键:(1);(2)=.
16、﹣24
【解析】
分析:
如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,由tan∠AOC=可得OF=3x,由此可得OC=5x,从而可得OA=5x,由已知条件易证S菱形ABCO=2S△COD=40=OA·CF=20x2,从而可得x=,由此可得点C的坐标为,这样由点C在反比例函数的图象上即可得到k=-24.
详解:
如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,
∵四边形ABCO是菱形,
∴AB∥CO,AO∥BC,
∵DE∥AO,
∴四边形AOED和四边形DECB都是平行四边形,
∴S△AOD=S△DOE,S△BCD=S△CDE,
∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,
∵tan∠AOC=,CF=4x,
∴OF=3x,
∴在Rt△COF中,由勾股定理可得OC=5x,
∴OA==OC=5x,
∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,
∴OF=,CF=,
∴点C的坐标为,
∵点C在反比例函数的图象上,
∴k=.
故答案为:-24.
点睛:本题的解题要点有两点:(1)作出如图所示的辅助线,设CF=4x,结合已知条件把OF和OA用含x的式子表达出来;(2)由四边形AOCB是菱形,点D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.
17、
【解析】
列举出所有情况,看在第四象限的情况数占总情况数的多少即可.
【详解】
如图:
共有12种情况,在第三象限的情况数有2种,
故不再第三象限的共10种,
不在第三象限的概率为,
故答案为.
【点睛】
本题考查了树状图法的知识,解题的关键是列出树状图求出概率.
三、解答题(共7小题,满分69分)
18、(1)CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由见解析;(3).
【解析】
分析:(1)线段AD绕点A逆时针旋转90°得到AE,根据旋转的性质得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.
(2)证明的方法与(1)类似.
(3)过A作AM⊥BC于M,EN⊥AM于N,根据旋转的性质得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,则NE=MA,由于∠ACB=45°,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到∠DCF=90°,由此得到Rt△AMD∽Rt△DCF,得,设DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函数即可求得CF的最大值.
详解:(1)①∵AB=AC,∠BAC=90°,
∴线段AD绕点A逆时针旋转90°得到AE,
∴AD=AE,∠BAD=∠CAE,
∴△BAD≌△CAE,
∴CE=BD,∠ACE=∠B,
∴∠BCE=∠BCA+∠ACE=90°,
∴BD⊥CE;
故答案为CE=BD,CE⊥BD.
(2)(1)中的结论仍然成立.理由如下:
如图,∵线段AD绕点A逆时针旋转90°得到AE,
∴AE=AD,∠DAE=90°,
∵AB=AC,∠BAC=90°
∴∠CAE=∠BAD,
∴△ACE≌△ABD,
∴CE=BD,∠ACE=∠B,
∴∠BCE=90°,即CE⊥BD,
∴线段CE,BD之间的位置关系和数量关系分别为:CE=BD,CE⊥BD.
(3)如图3,过A作AM⊥BC于M,EN⊥AM于N,
∵线段AD绕点A逆时针旋转90°得到AE
∴∠DAE=90°,AD=AE,
∴∠NAE=∠ADM,
易证得Rt△AMD≌Rt△ENA,
∴NE=AM,
∵∠ACB=45°,
∴△AMC为等腰直角三角形,
∴AM=MC,
∴MC=NE,
∵AM⊥BC,EN⊥AM,
∴NE∥MC,
∴四边形MCEN为平行四边形,
∵∠AMC=90°,
∴四边形MCEN为矩形,
∴∠DCF=90°,
∴Rt△AMD∽Rt△DCF,
∴,
设DC=x,
∵∠ACB=45°,AC=,
∴AM=CM=1,MD=1-x,
∴,
∴CF=-x2+x=-(x-)2+,
∴当x=时有最大值,CF最大值为.
点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等腰直角三角形的性质和三角形全等及相似的判定与性质.
19、(1)证明见解析;(2)4.
【解析】
(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.
【详解】
解:(1)在△ABC和△DFE中
,
∴△ABC≌△DFE(SAS),
∴∠ACE=∠DEF,
∴AC∥DE;
(2)∵△ABC≌△DFE,
∴BC=EF,
∴CB﹣EC=EF﹣EC,
∴EB=CF,
∵BF=13,EC=5,
∴EB=4,
∴CB=4+5=1.
【点睛】
考点:全等三角形的判定与性质.
20、(1)2400元;(2)8台.
【解析】
试题分析:(1)设商场第一次购入的空调每台进价是x元,根据题目条件“商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元”列出分式方程解答即可;
(2)设最多将台空调打折出售,根据题目条件“在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售”列出不等式并解答即可.
试题解析:(1)设第一次购入的空调每台进价是x元,依题意,得
解得
经检验,是原方程的解.
答:第一次购入的空调每台进价是2 400元.
(2)由(1)知第一次购入空调的台数为24 000÷2 400=10(台),第二次购入空调的台数为10×2=20(台).
设第二次将y台空调打折出售,由题意,得
解得
答:最多可将8台空调打折出售.
21、作图见解析;CE=4.
【解析】
分析:利用数形结合的思想解决问题即可.
详解:如图所示,矩形ABCD和△ABE即为所求;CE=4.
点睛:本题考查作图-应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题.
22、(1)证明见解析;(2).
【解析】
(1)连接AF、AC,易证∠EAC=∠DAF,再证明ΔEAC≅ΔDAF,根据全等三角形的性质即可得CE=DF;(2)由旋转的性质可得∠DAG、∠BAE都是旋转角,在四边形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,由此即可解答.
【详解】
(1)证明:连接,
∵正方形旋转至正方形
∴,
∴
∴
在和中,
,
∴
∴
(2).∠DAG、∠BAE、∠FMC、∠CNF;
由旋转的性质可得∠DAG、∠BAE都是旋转角,在四边形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,
【点睛】
本题考查了正方形的性质、旋转的性质及全等三角形的判定与性质,证明ΔEAC≅ΔDAF是解决问题的关键.
23、(1)y=﹣x2+x+2=(x﹣)2+,顶点坐标为(,);(2)存在,点M(,0).理由见解析.
【解析】
(1)由根与系数的关系,结合已知条件可得9+4m=17,解方程求得m的值,即可得求得二次函数的解析式,再求得该二次函数图象的顶点的坐标即可;(2)存在,将抛物线表达式和一次函数y=﹣x+2联立并解得x=0或,即可得点A、B的坐标为(0,2)、(,),由此求得PB=, AP=2,过点B作BM⊥AB交x轴于点M,证得△APO∽△MPB,根据相似三角形的性质可得 ,代入数据即可求得MP=,再求得OM=,即可得点M的坐标为(,0).
【详解】
(1)由题意得:x1+x2=3,x1x2=﹣2m,
x12+x22=(x1+x2)2﹣2x1x2=17,即:9+4m=17,
解得:m=2,
抛物线的表达式为:y=﹣x2+x+2=(x﹣)2+,
顶点坐标为(,);
(2)存在,理由:
将抛物线表达式和一次函数y=﹣x+2联立并解得:x=0或,
∴点A、B的坐标为(0,2)、(,),
一次函数y=﹣x+2与x轴的交点P的坐标为(6,0),
∵点P的坐标为(6,0),B的坐标为(,),点B的坐标为(0,2)、
∴PB==,
AP==2
过点B作BM⊥AB交x轴于点M,
∵∠MBP=∠AOP=90°,∠MPB=∠APO,
∴△APO∽△MPB,
∴ ,∴ ,
∴MP=,
∴OM=OP﹣MP=6﹣=,
∴点M(,0).
【点睛】
本题是一道二次函数的综合题,一元二次方程根与系数的关系、直线与抛物线的较大坐标.相似三角形的判定与性质,题目较为综合,有一定的难度,解决第二问的关键是求得PB、AP的长,再利用相似三角形的性质解决问题.
24、﹣<x≤0,不等式组的解集表示在数轴上见解析.
【解析】
先求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解不等式2x+1>0,得:x>﹣,
解不等式,得:x≤0,
则不等式组的解集为﹣<x≤0,
将不等式组的解集表示在数轴上如下:
【点睛】
本题考查了解一元一次不等式组,解题的关键是掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”.
北京市东城区五十中学2021-2022学年中考数学全真模拟试题含解析: 这是一份北京市东城区五十中学2021-2022学年中考数学全真模拟试题含解析,共15页。
北京市东城区五十中学2022年中考五模数学试题含解析: 这是一份北京市东城区五十中学2022年中考五模数学试题含解析,共21页。
北京市北京大附属中学2021-2022学年中考数学模拟预测试卷含解析: 这是一份北京市北京大附属中学2021-2022学年中考数学模拟预测试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,实数的倒数是等内容,欢迎下载使用。