2022年广东省东莞市(莞外、松山湖实验)达标名校中考试题猜想数学试卷含解析
展开这是一份2022年广东省东莞市(莞外、松山湖实验)达标名校中考试题猜想数学试卷含解析,共21页。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,半径为的中,弦,所对的圆心角分别是,,若,,则弦的长等于( )
A. B. C. D.
2.平面上直线a、c与b相交(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )
A.60° B.50° C.40° D.30°
3.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为( )
A.35° B.45° C.55° D.65°
4.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( )
A.10π B.15π C.20π D.30π
5.某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为( )
A.152元 B.156元 C.160元 D.190元
6.已知一个多边形的内角和是1080°,则这个多边形是( )
A.五边形 B.六边形 C.七边形 D.八边形
7.如图,PA和PB是⊙O的切线,点A和B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是( )
A.60° B.65° C.70° D.75°
8.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )
A.10 B.9 C.8 D.7
9.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:
弧①是以O为圆心,任意长为半径所画的弧;弧②是以P为圆心,任意长为半径所画的弧;弧③是以A为圆心,任意长为半径所画的弧;弧④是以P为圆心,任意长为半径所画的弧;
其中正确说法的个数为( )
A.4 B.3 C.2 D.1
10.如图,是的外接圆,已知,则的大小为
A. B. C. D.
11.如图是二次函数y=ax2+bx+c的图象,有下列结论:①ac<1;②a+b<1;③4ac>b2;④4a+2b+c<1.其中正确的个数是( )
A.1个 B.2个 C.3个 D.4个
12.直线AB、CD相交于点O,射线OM平分∠AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是( )
A.相离 B.相切 C.相交 D.不确定
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知一个正数的平方根是3x-2和5x-6,则这个数是_____.
14.若向北走5km记作﹣5km,则+10km的含义是_____.
15.因式分解:9x﹣x2=_____.
16.如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是______mm.
17.已知:a(a+2)=1,则a2+ =_____.
18.PA、PB分别切⊙O于点A、B,∠PAB=60°,点C在⊙O上,则∠ACB的度数为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.试判断PD与⊙O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE•CP的值.
20.(6分)先化简,再求值:,其中a为不等式组的整数解.
21.(6分)P是外一点,若射线PC交于点A,B两点,则给出如下定义:若,则点P为的“特征点”.
当的半径为1时.
在点、、中,的“特征点”是______;
点P在直线上,若点P为的“特征点”求b的取值范围;
的圆心在x轴上,半径为1,直线与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是的“特征点”,直接写出点C的横坐标的取值范围.
22.(8分)如图,已知点A(﹣2,0),B(4,0),C(0,3),以D为顶点的抛物线y=ax2+bx+c过A,B,C三点.
(1)求抛物线的解析式及顶点D的坐标;
(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标.
23.(8分)如图所示,在坡角为30°的山坡上有一竖立的旗杆AB,其正前方矗立一墙,当阳光与水平线成45°角时,测得旗杆AB落在坡上的影子BD的长为8米,落在墙上的影子CD的长为6米,求旗杆AB的高(结果保留根号).
24.(10分)在某校举办的 2012 年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品 200 个以上可以按折扣价出售;购买 200 个以下(包括 200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要 1050 元;若多买 35 个,则按折扣价付款,恰好共需 1050 元.设小王按原计划购买纪念品 x 个.
(1)求 x 的范围;
(2)如果按原价购买 5 个纪念品与按打折价购买 6 个纪念品的钱数相同,那么小王原计划购买多少个纪念品?
25.(10分)向阳中学校园内有一条林萌道叫“勤学路”,道路两边有如图所示的路灯(在铅垂面内的示意图),灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=1.求灯杆AB的长度.
26.(12分)化简:
27.(12分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC.(结果精确到0.1米,参考数据:sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.5,≈1.73)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=BF=1,从而求解.
解:作AH⊥BC于H,作直径CF,连结BF,如图,
∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,
∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,
∵AH⊥BC,∴CH=BH,
∵CA=AF,∴AH为△CBF的中位线,∴AH=BF=1.
∴,
∴BC=2BH=2.
故选A.
“点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.
2、C
【解析】
先根据平角的定义求出∠1的度数,再由平行线的性质即可得出结论.
【详解】
解:∵∠1=180°﹣100°=80°,a∥c,
∴∠α=180°﹣80°﹣60°=40°.
故选:C.
【点睛】
本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.
3、C
【解析】
分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.
详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,
∴∠B=∠ADC=35°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠CAB=90°-∠B=55°,
故选C.
点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.
4、B
【解析】
由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,
∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,
∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,
∴圆锥的侧面积=lr=×6π×5=15π,故选B
5、C
【解析】
【分析】设进价为x元,依题意得240×0.8-x=20x℅,解方程可得.
【详解】设进价为x元,依题意得
240×0.8-x=20x℅
解得x=160
所以,进价为160元.
故选C
【点睛】本题考核知识点:列方程解应用题. 解题关键点:找出相等关系.
6、D
【解析】
根据多边形的内角和=(n﹣2)•180°,列方程可求解.
【详解】
设所求多边形边数为n,
∴(n﹣2)•180°=1080°,
解得n=8.
故选D.
【点睛】
本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
7、C
【解析】
试题分析:连接OB,根据PA、PB为切线可得:∠OAP=∠OBP=90°,根据四边形AOBP的内角和定理可得∠AOB=140°,∵OC=OB,则∠C=∠OBC,根据∠AOB为△OBC的外角可得:∠ACB=140°÷2=70°.
考点:切线的性质、三角形外角的性质、圆的基本性质.
8、D
【解析】
分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.
详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.
故选D.
点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.
9、C
【解析】
根据基本作图的方法即可得到结论.
【详解】
解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;
(2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;
(3)弧③是以A为圆心,大于AB的长为半径所画的弧,错误;
(4)弧④是以P为圆心,任意长为半径所画的弧,正确.
故选C.
【点睛】
此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.
10、A
【解析】
解:△AOB中,OA=OB,∠ABO=30°;
∴∠AOB=180°-2∠ABO=120°;
∴∠ACB=∠AOB=60°;故选A.
11、C
【解析】
由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.
【详解】
解:①根据图示知,该函数图象的开口向上,∴a>1;该函数图象交于y轴的负半轴,
∴c<1;故①正确;
②对称轴
∴ ∴b<1;
故②正确;
③根据图示知,二次函数与x轴有两个交点,所以,即,故③错误
④故本选项正确.
正确的有3项
故选C.
【点睛】
本题考查二次函数的图象与系数的关系.二次项系数决定了开口方向,一次项系数和二次项系数共同决定了对称轴的位置,常数项决定了与轴的交点位置.
12、A
【解析】
根据角平分线的性质和点与直线的位置关系解答即可.
【详解】
解:如图所示;
∵OM平分∠AOD,以点P为圆心的圆与直线AB相离,
∴以点P为圆心的圆与直线CD相离,
故选:A.
【点睛】
此题考查直线与圆的位置关系,关键是根据角平分线的性质解答.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
试题解析:根据题意,得:
解得:
故答案为
【点睛】
:一个正数有2个平方根,它们互为相反数.
14、向南走10km
【解析】
分析:与北相反的方向是南,由题意,负数表示向北走,则正数就表示向南走,据此得出结论.
详解:∵ 向北走5km记作﹣5km,
∴ +10km表示向南走10km.
故答案是:向南走10km.
点睛:本题考查对相反意义量的认识:在一对具有相反意义的量中,先规定一个为正数,则另一个就要用负数表示.
15、x(9﹣x)
【解析】
试题解析:
故答案为
点睛:常见的因式分解的方法:提取公因式法,公式法,十字相乘法.
16、200
【解析】
先求出OA的长,再由垂径定理求出AC的长,根据勾股定理求出OC的长,进而可得出结论.
【详解】
解:∵⊙O的直径为1000mm,
∴OA=OA=500mm.
∵OD⊥AB,AB=800mm,
∴AC=400mm,
∴OC== =300mm,
∴CD=OD-OC=500-300=200(mm).
答:水的最大深度为200mm.
故答案为:200
【点睛】
本题考查的是垂径定理的应用,根据勾股定理求出OC的长是解答此题的关键.
17、3
【解析】
先根据a(a+2)=1得出a2=1-2a,再把a2=1-2a代入a2+进行计算.
【详解】
a(a+2)=1得出a2=1-2a,
a2+1-2a+= ===3.
【点睛】
本题考查的是代数式求解,熟练掌握代入法是解题的关键.
18、60°或120°.
【解析】
连接OA、OB,根据切线的性质得出∠OAP的度数,∠OBP的度数;再根据四边形的内角和是360°,求出∠AOB的度数,有圆周角定理或圆内接四边形的性质,求出∠ACB的度数即可.
【详解】
解:连接OA、OB.
∵PA,PB分别切⊙O于点A,B,
∴OA⊥PA,OB⊥PB;
∴∠PAO=∠PBO=90°;
又∵∠APB=60°,
∴在四边形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,
∴
即当C在D处时,∠ACB=60°.
在四边形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.
于是∠ACB的度数为60°或120°,
故答案为60°或120°.
【点睛】
本题考查的是切线的性质定理,圆内接四边形的性质,是一道基础题.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)PD是⊙O的切线.证明见解析.(2)1.
【解析】
试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;
(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.
试题解析:(1)如图,PD是⊙O的切线.
证明如下:
连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.
(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.
考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.
20、,1
【解析】
先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可.
【详解】
解:原式=[﹣]
=
=,
∵不等式组的解为<a<5,其整数解是2,3,4,
a不能等于0,2,4,
∴a=3,
当a=3时,原式==1.
【点睛】
本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.
21、(1)①、;②(2)或,.
【解析】
据若,则点P为的“特征点”,可得答案;
根据若,则点P为的“特征点”,可得,根据等腰直角三角形的性质,可得答案;
根据垂线段最短,可得PC最短,根据等腰直角三角形的性质,可得,根据若,则点P为的“特征点”,可得答案.
【详解】
解:,,
点是的“特征点”;
,,
点是的“特征点”;
,,
点不是的“特征点”;
故答案为、
如图1,
在上,若存在的“特征点”点P,点O到直线的距离.
直线交y轴于点E,过O作直线于点H.
因为.
在中,可知.
可得同理可得.
的取值范围是:
如图2
,
设C点坐标为,
直线,.
,,
,.
.
,
线段MN上的所有点都不是的“特征点”,
,
即,
解得或,
点C的横坐标的取值范围是或,.
故答案为 :(1)①、;②(2)或,.
【点睛】
本题考查一次函数综合题,解的关键是利用若,则点P为的“特征点”;解的关键是利用等腰直角三角形的性质得出OE的长;解的关键是利用等腰直角三角形的性质得出,又利用了.
22、(1)y=﹣x2+x+3;D(1,);(2)P(3,).
【解析】
(1)设抛物线的解析式为y=a(x+2)(x-4),将点C(0,3)代入可求得a的值,将a的值代入可求得抛物线的解析式,配方可得顶点D的坐标;
(2)画图,先根据点B和C的坐标确定直线BC的解析式,设P(m,-m2+m+3),则F(m,-m+3),表示PF的长,根据四边形DEFP为平行四边形,由DE=PF列方程可得m的值,从而得P的坐标.
【详解】
解:(1)设抛物线的解析式为y=a(x+2)(x﹣4),
将点C(0,3)代入得:﹣8a=3,
解得:a=﹣,
y=﹣x2+x+3=﹣(x﹣1)2+,
∴抛物线的解析式为y=﹣x2+x+3,且顶点D(1,);
(2)∵B(4,0),C(0,3),
∴BC的解析式为:y=﹣x+3,
∵D(1,),
当x=1时,y=﹣+3=,
∴E(1,),
∴DE=-=,
设P(m,﹣m2+m+3),则F(m,﹣m+3),
∵四边形DEFP是平行四边形,且DE∥FP,
∴DE=FP,
即(﹣m2+m+3)﹣(﹣m+3)=,
解得:m1=1(舍),m2=3,
∴P(3,).
【点睛】
本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数和二次函数的解析式,利用方程思想列等式求点的坐标,难度适中.
23、旗杆AB的高为(4+1)m.
【解析】
试题分析:过点C作CE⊥AB于E,过点B作BF⊥CD于F.在Rt△BFD中,分别求出DF、BF的长度.在Rt△ACE中,求出AE、CE的长度,继而可求得AB的长度.
试题解析:解:过点C作CE⊥AB于E,过点B作BF⊥CD于F,过点B作BF⊥CD于F.
在Rt△BFD中,∵∠DBF=30°,sin∠DBF==,cos∠DBF==.
∵BD=8,∴DF=4,BF=.
∵AB∥CD,CE⊥AB,BF⊥CD,∴四边形BFCE为矩形,∴BF=CE=4,CF=BE=CD﹣DF=1.
在Rt△ACE中,∠ACE=45°,∴AE=CE=4,∴AB=4+1(m).
答:旗杆AB的高为(4+1)m.
24、(1)0<x≤200,且 x是整数(2)175
【解析】
(1)根据商场的规定确定出x的范围即可;
(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.
【详解】
(1)根据题意得:0<x≤200,且x为整数;
(2)设小王原计划购买x个纪念品,
根据题意得:,
整理得:5x+175=6x,
解得:x=175,
经检验x=175是分式方程的解,且满足题意,
则小王原计划购买175个纪念品.
【点睛】
此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.
25、灯杆AB的长度为2.3米.
【解析】
过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=2.设AF=x知EF=AF=x、DF==,由DE=13.3求得x=11.4,据此知AG=AF﹣GF=1.4,再求得∠ABG=∠ABC﹣∠CBG=30°可得AB=2AG=2.3.
【详解】
过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=2.
由题意得:∠ADE=α,∠E=45°.
设AF=x.
∵∠E=45°,∴EF=AF=x.
在Rt△ADF中,∵tan∠ADF=,∴DF==.
∵DE=13.3,∴x+=13.3,∴x=11.4,∴AG=AF﹣GF=11.4﹣2=1.4.
∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°,∴AB=2AG=2.3.
答:灯杆AB的长度为2.3米.
【点睛】
本题主要考查解直角三角形﹣仰角俯角问题,解题的关键是结合题意构建直角三角形并熟练掌握三角函数的定义及其应用能力.
26、x+2
【解析】
先把括号里的分式通分,化简,再计算除法.
【详解】
解:原式= =x+2
【点睛】
此题重点考察学生对分式的化简的应用,掌握通分和约分是解题的关键.
27、工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.
【解析】
解:在Rt△BAE中,∠BAE=680,BE=162米,∴(米).
在Rt△DEC中,∠DGE=600,DE=176.6米,∴(米).
∴(米).
∴工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.
在Rt△BAE和Rt△DEC中,应用正切函数分别求出AE和CE的长即可求得AC的长.
相关试卷
这是一份2024年广东省东莞市松山湖沙田实验中学中考数学模拟试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广东省东莞市松山湖沙田实验中学中考数学模拟试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省东莞市(莞外、松山湖实验)2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案,共7页。试卷主要包含了若,则的值为,4的平方根是等内容,欢迎下载使用。