2022年成都武侯区重点名校中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,已知Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转,使点D落在射线CA上,DE的延长线交BC于F,则∠CFD的度数为( )
A.80° B.90° C.100° D.120°
2.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为()
A.30 B.27 C.14 D.32
3.的平方根是( )
A.2 B. C.±2 D.±
4.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于( )
A. B. C. D.
5.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为( )
A.40° B.60° C.80° D.100°
6.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是( )
A.74 B.44 C.42 D.40
7.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=( )
A. B. C. D.
8.如图,要使□ABCD成为矩形,需添加的条件是()
A.AB=BC B.∠ABC=90° C.AC⊥BD D.∠1=∠2
9.函数在同一直角坐标系内的图象大致是( )
A. B. C. D.
10.解分式方程 ,分以下四步,其中,错误的一步是( )
A.方程两边分式的最简公分母是(x﹣1)(x+1)
B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6
C.解这个整式方程,得x=1
D.原方程的解为x=1
11.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为( )
A. B. C. D.
12.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:
(1)出租车的速度为100千米/时;
(2)客车的速度为60千米/时;
(3)两车相遇时,客车行驶了3.75小时;
(4)相遇时,出租车离甲地的路程为225千米.
其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.阅读下面材料:
在数学课上,老师提出利用尺规作图完成下面问题:
已知:∠ACB是△ABC的一个内角.
求作:∠APB=∠ACB.
小明的做法如下:
如图
①作线段AB的垂直平分线m;
②作线段BC的垂直平分线n,与直线m交于点O;
③以点O为圆心,OA为半径作△ABC的外接圆;
④在弧ACB上取一点P,连结AP,BP.
所以∠APB=∠ACB.
老师说:“小明的作法正确.”
请回答:
(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是_____;
(2)∠APB=∠ACB的依据是_____.
14.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,点 D、E 分别在边AC、BC上,且CD:CE=3︰1.将△CDE绕点D顺时针旋转,当点C落在线段DE上的点 F处时,BF恰好是∠ABC的平分线,此时线段CD的长是________.
15.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点A(,-1),则不等式mx+2<kx+b<0的解集为____.
16.在中,若,则的度数是______.
17.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___岁.
18.计算:的值是______________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,点A(m,m+1),B(m+1,2m-3)都在反比例函数的图象上.
(1)求m,k的值;
(2)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.
20.(6分)如图,已知△ABC是等边三角形,点D在AC边上一点,连接BD,以BD为边在AB的左侧作等边△DEB,连接AE,求证:AB平分∠EAC.
21.(6分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B款运动鞋的销售量是A款的,则1月份B款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价×销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.
22.(8分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练。王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的跳远成绩,将两次测得的成绩制作成图所示的统计图和不完整的统计表(满分10分,得分均为整数).
根据以上信息回答下列问题:训练后学生成绩统计表中,并补充完成下表:
若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?经调查,经过训练后得到9分的五名同学中,有三名男生和两名女生,王老师要从这五名同学中随机抽取两名同学写出训练报告,请用列表或画树状图的方法,求所抽取的两名同学恰好是一男一女的概率.
23.(8分)已知反比例函数的图象过点A(3,2).
(1)试求该反比例函数的表达式;
(2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.
24.(10分)如图,在方格纸中.
(1)请在方格纸上建立平面直角坐标系,使,,并求出点坐标;
(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;
(3)计算的面积.
25.(10分)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,).
(1)求抛物线的表达式.
(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).
①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;
②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.
26.(12分)如图所示,点B、F、C、E在同一直线上,AB⊥BE,DE⊥BE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE.
27.(12分)如图,已知一次函数的图象与反比例函数的图象交于点,与轴、轴交于两点,过作垂直于轴于点.已知.
(1)求一次函数和反比例函数的表达式;
(2)观察图象:当时,比较.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据旋转的性质得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根据三角形外角性质得出∠CFD=∠B+∠BEF,代入求出即可.
【详解】
解:∵将△ABC绕点A顺时针旋转得到△ADE,
∴△ABC≌△ADE,
∴∠B=∠D,
∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,
∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,
∴∠CFD=∠B+∠BEF=90°,
故选:B.
【点睛】
本题考查了旋转的性质,全等三角形的性质和判定,三角形内角和定理,三角形外角性质的应用,掌握旋转变换的性质是解题的关键.
2、A
【解析】
∵四边形ABCD是平行四边形,
∴AB//CD,AB=CD,AD//BC,
∴△BEF∽△CDF,△BEF∽△AED,
∴ ,
∵BE:AB=2:3,AE=AB+BE,
∴BE:CD=2:3,BE:AE=2:5,
∴ ,
∵S△BEF=4,
∴S△CDF=9,S△AED=25,
∴S四边形ABFD=S△AED-S△BEF=25-4=21,
∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,
故选A.
【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.
3、D
【解析】
先化简,然后再根据平方根的定义求解即可.
【详解】
∵=2,2的平方根是±,
∴的平方根是±.
故选D.
【点睛】
本题考查了平方根的定义以及算术平方根,先把正确化简是解题的关键,本题比较容易出错.
4、A
【解析】
首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.
【详解】
设此多边形为n边形,
根据题意得:180(n-2)=1080,
解得:n=8,
∴这个正多边形的每一个外角等于:360°÷8=45°.
故选A.
【点睛】
此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.
5、D
【解析】
根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
解:∵l1∥l2,
∴∠3=∠1=60°,
∴∠2=∠A+∠3=40°+60°=100°.
故选D.
【点睛】
本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.
6、C
【解析】
试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.
考点:众数.
7、B
【解析】
解:由折叠的性质可得,∠EDF=∠C=60º,CE=DE,CF=DF
再由∠BDF+∠ADE=∠BDF+∠BFD=120º
可得∠ADE=∠BFD,又因∠A=∠B=60º,
根据两角对应相等的两三角形相似可得△AED∽△BDF
所以,
设AD=a,BD=2a,AB=BC=CA=3a,
再设CE==DE=x,CF==DF=y,则AE=3a-x,BF=3a-y,
所以
整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;
把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,
即
故选B.
【点睛】
本题考查相似三角形的判定及性质.
8、B
【解析】
根据一个角是90度的平行四边形是矩形进行选择即可.
【详解】
解:A、是邻边相等,可判定平行四边形ABCD是菱形;
B、是一内角等于90°,可判断平行四边形ABCD成为矩形;
C、是对角线互相垂直,可判定平行四边形ABCD是菱形;
D、是对角线平分对角,可判断平行四边形ABCD成为菱形;
故选:B.
【点睛】
本题主要应用的知识点为:矩形的判定. ①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.
9、C
【解析】
根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.
【详解】
当a>0时,二次函数的图象开口向上,
一次函数的图象经过一、三或一、二、三或一、三、四象限,
故A、D不正确;
由B、C中二次函数的图象可知,对称轴x=->0,且a>0,则b<0,
但B中,一次函数a>0,b>0,排除B.
故选C.
10、D
【解析】
先去分母解方程,再检验即可得出.
【详解】
方程无解,虽然化简求得,但是将代入原方程中,可发现和的分母都为零,即无意义,所以,即方程无解
【点睛】
本题考查了分式方程的求解与检验,在分式方程中,一般求得的x值都需要进行检验
11、B
【解析】
本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.
【详解】
①若第一次摸到的是白球,则有第一次摸到白球的概率为,第二次,摸到白球的概率为,则有;②若第一次摸到的球是红色的,则有第一次摸到红球的概率为,第二次摸到白球的概率为1,则有,则两次摸到的球的颜色不同的概率为.
【点睛】
掌握分类讨论的方法是本题解题的关键.
12、D
【解析】
根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.
【详解】
由图象可得,
出租车的速度为:600÷6=100千米/时,故(1)正确,
客车的速度为:600÷10=60千米/时,故(2)正确,
两车相遇时,客车行驶时间为:600÷(100+60)=3.75(小时),故(3)正确,
相遇时,出租车离甲地的路程为:60×3.75=225千米,故(4)正确,
故选D.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、①线段垂直平分线上的点与这条线段两个端点的距离相等;②等量代换 同弧所对的圆周角相等
【解析】
(1)根据线段的垂直平分线的性质定理以及等量代换即可得出结论.
(2)根据同弧所对的圆周角相等即可得出结论.
【详解】
(1)如图2中,
∵MN垂直平分AB,EF垂直平分BC,
∴OA=OB,OB=OC(线段垂直平分线上的点与这条线段两个端点的距离相等),
∴OA=OB=OC(等量代换)
故答案是:
(2)∵,
∴∠APB=∠ACB(同弧所对的圆周角相等).
故答案是:(1)线段垂直平分线上的点与这条线段两个端点的距离相等和等量代换;(2)同弧所对的圆周角相等.
【点睛】
考查作图-复杂作图、线段的垂直平分线的性质、三角形的外心等知识,解题的关键是熟练掌握三角形外心的性质.
14、2
【解析】
分析:设CD=3x,则CE=1x,BE=12﹣1x,依据∠EBF=∠EFB,可得EF=BE=12﹣1x,由旋转可得DF=CD=3x,再根据Rt△DCE中,CD2+CE2=DE2,即可得到(3x)2+(1x)2=(3x+12﹣1x)2,进而得出CD=2.
详解:如图所示,设CD=3x,则CE=1x,BE=12﹣1x.∵=,∠DCE=∠ACB=90°,∴△ACB∽△DCE,∴∠DEC=∠ABC,∴AB∥DE,∴∠ABF=∠BFE.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠EBF=∠EFB,∴EF=BE=12﹣1x,由旋转可得DF=CD=3x.在Rt△DCE中,∵CD2+CE2=DE2,∴(3x)2+(1x)2=(3x+12﹣1x)2,解得x1=2,x2=﹣3(舍去),∴CD=2×3=2.故答案为2.
点睛:本题考查了相似三角形的判定与性质,勾股定理以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
15、﹣4<x<﹣
【解析】
根据函数的图像,可知不等式mx+2<kx+b<0的解集就是y=mx+2在函数y=kx+b的下面,且它们的值小于0的解集是﹣4<x<﹣.
故答案为﹣4<x<﹣.
16、
【解析】
先根据非负数的性质求出,,再由特殊角的三角函数值求出与的值,根据三角形内角和定理即可得出结论.
【详解】
在中,,
,,
,,
,
故答案为:.
【点睛】
本题考查了非负数的性质以及特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.
17、1.
【解析】
根据中位数的定义找出第20和21个数的平均数,即可得出答案.
【详解】
解:∵该班有40名同学,
∴这个班同学年龄的中位数是第20和21个数的平均数.
∵14岁的有1人,1岁的有21人,
∴这个班同学年龄的中位数是1岁.
【点睛】
此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键.
18、-1
【解析】
解:=-1.故答案为:-1.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)m=3,k=12;(2)或
【解析】
【分析】(1)把A(m,m+1),B(m+3,m-1)代入反比例函数y=,得k=m(m+1)=(m+3)(m-1),再求解;(2)用待定系数法求一次函数解析式;(3)过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.根据平行四边形判定和勾股定理可求出M,N的坐标.
【详解】
解:(1)∵点A(m,m+1),B(m+3,m-1)都在反比例函数y=的图像上,
∴k=xy,
∴k=m(m+1)=(m+3)(m-1),
∴m2+m=m2+2m-3,解得m=3,
∴k=3×(3+1)=12.
(2)∵m=3,
∴A(3,4),B(6,2).
设直线AB的函数表达式为y=k′x+b(k′≠0),
则
解得
∴直线AB的函数表达式为y=-x+6.
(3)M(3,0),N(0,2)或M(-3,0),N(0,-2).
解答过程如下:过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.
∵由(1)知:A(3,4),B(6,2),
∴AP=PM=2,BP=PN=3,
∴四边形ANMB是平行四边形,此时M(3,0),N(0,2).当M′(-3,0),N′(0,-2)时,根据勾股定理能求出AM′=BN′,AB=M′N′,即四边形AM′N′B是平行四边形.故M(3,0),N(0,2)或M(-3,0),N(0,-2).
【点睛】本题考核知识点:反比例函数综合. 解题关键点:熟记反比例函数的性质.
20、详见解析
【解析】
由等边三角形的性质得出AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,证出∠ABE=∠CBD,证明△ABE≌△CBD(SAS),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC,即可得出结论.
【详解】
证明:∵△ABC,△DEB都是等边三角形,
∴AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,
∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,
即∠ABE=∠CBD,
在△ABE和△CBD中,
∵AB=CB,
∠ABE=∠CBD,
BE=BD,,
∴△ABE≌△CBD(SAS),
∴∠BAE=∠BCD=60°,
∴∠BAE=∠BAC,
∴AB平分∠EAC.
【点睛】
本题考查了全等三角形的判定与性质,等边三角形的性质等知识,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.
21、(1)1月份B款运动鞋销售了40双;(2)3月份的总销售额为39000元;(3)详见解析.
【解析】
试题分析:(1)用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出二元一次方程组,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可.
试题解析:(1)根据题意,用一月份A款的数量乘以:50×=40(双).即一月份B款运动鞋销售了40双;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据题意得:,解得:.则三月份的总销售额是:400×65+500×26=39000=3.9(万元);(3)从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销量大,建议多进A款运动鞋,少进或不进B款运动鞋.
考点:1.折线统计图;2.条形统计图.
22、(1),见解析;(2)125人;(3)
【解析】
(1)利用强化训练前后人数不变计算n的值;利用中位数对应计算强化训练前的中位数;利用平均数的计算方法计算强化训练后的平均分;利用众数的定义确定强化训练后的众数;
(2)用500分别乘以样本中训练前后优秀的人数的百分比,然后求差即可;
(3)画树状图展示所有20种等可能的结果数,再找出所抽取的两名同学恰好是一男一女的结果数,然后根据概率公式求解.
【详解】
(1)解:(1)n=20-1-3-8-5=3;
强化训练前的中位数,
强化训练后的平均分为(1×6+3×7+8×8+9×5+10×3)=8.3;
强化训练后的众数为8,
故答案为3;7.5;8.3;8;
(2)(人)
(3)(3)画树状图为:
共有20种等可能的结果数,其中所抽取的两名同学恰好是一男一女的结果数为12,
所以所抽取的两名同学恰好是一男一女的概率P=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.
23、(1);(2)MB=MD.
【解析】
(1)将A(3,2)分别代入y= ,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;
(2)有S△OMB=S△OAC=×=3 ,可得矩形OBDC的面积为12;即OC×OB=12 ;进而可得m、n的值,故可得BM与DM的大小;比较可得其大小关系.
【详解】
(1)将A(3,2)代入中,得2,∴k=6,
∴反比例函数的表达式为.
(2)BM=DM,理由:∵S△OMB=S△OAC=×=3,
∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12,
即OC·OB=12,
∵OC=3,∴OB=4,即n=4,∴,
∴MB=,MD=,∴MB=MD.
【点睛】
本题考查了待定系数法求反比例函数和正比例函数解析式,反比例函数比例系数的几何意义,矩形的性质等知识.熟练掌握待定系数法是解(1)的关键,掌握反比例函数系数的几何意义是解(2)的关键.
24、(1)作图见解析;.(2)作图见解析;(3)1.
【解析】
分析:(1)直接利用A,C点坐标得出原点位置进而得出答案;
(2)利用位似图形的性质即可得出△A'B'C';
(3)直接利用(2)中图形求出三角形面积即可.
详解:(1)如图所示,即为所求的直角坐标系;B(2,1);
(2)如图:△A'B'C'即为所求;
(3)S△A'B'C'=×4×8=1.
点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.
25、(1)抛物线的解析式为:;
(2)①S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;
②存在.R点的坐标是(3,﹣);
(3)M的坐标为(1,﹣).
【解析】
试题分析:(1)设抛物线的解析式是y=ax2+bx+c,求出A、B、D的坐标代入即可;
(2)①由勾股定理即可求出;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标;
(3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标.
试题解析:(1)设抛物线的解析式是y=ax2+bx+c,
∵正方形的边长2,
∴B的坐标(2,﹣2)A点的坐标是(0,﹣2),
把A(0,﹣2),B(2,﹣2),D(4,﹣)代入得:,
解得a=,b=﹣,c=﹣2,
∴抛物线的解析式为:,
答:抛物线的解析式为:;
(2)①由图象知:PB=2﹣2t,BQ=t,
∴S=PQ2=PB2+BQ2,
=(2﹣2t)2+t2,
即S=5t2﹣8t+4(0≤t≤1).
答:S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;
②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形.
∵S=5t2﹣8t+4(0≤t≤1),
∴当S=时,5t2﹣8t+4=,得20t2﹣32t+11=0,
解得t=,t=(不合题意,舍去),
此时点P的坐标为(1,﹣2),Q点的坐标为(2,﹣),
若R点存在,分情况讨论:
(i)假设R在BQ的右边,如图所示,这时QR=PB,RQ∥PB,
则R的横坐标为3,R的纵坐标为﹣,
即R(3,﹣),
代入,左右两边相等,
∴这时存在R(3,﹣)满足题意;
(ii)假设R在QB的左边时,这时PR=QB,PR∥QB,
则R(1,﹣)代入,,
左右不相等,∴R不在抛物线上.(1分)
综上所述,存点一点R(3,﹣)满足题意.
答:存在,R点的坐标是(3,﹣);
(3)如图,M′B=M′A,
∵A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,
理由是:∵MA=MB,若M不为L与DB的交点,则三点B、M、D构成三角形,
∴|MB|﹣|MD|<|DB|,
即M到D、A的距离之差为|DB|时,差值最大,
设直线BD的解析式是y=kx+b,把B、D的坐标代入得:,
解得:k=,b=﹣,
∴y=x﹣,
抛物线的对称轴是x=1,
把x=1代入得:y=﹣
∴M的坐标为(1,﹣);
答:M的坐标为(1,﹣).
考点:二次函数综合题.
26、证明见解析
【解析】
试题分析:证明三角形△ABC△DEF,可得=.
试题解析:
证明:∵=,
∴BC=EF,
∵⊥,⊥,
∴∠B=∠E=90°,AC=DF,
∴△ABC△DEF,
∴AB=DE.
27、(1);(2)
【解析】
(1)由一次函数的解析式可得出D点坐标,从而得出OD长度,再由△ODC与△BAC相似及AB与BC的长度得出C、B、A的坐标,进而算出一次函数与反比例函数的解析式;
(2)以A点为分界点,直接观察函数图象的高低即可知道答案.
【详解】
解:(1)对于一次函数y=kx-2,令x=0,则y=-2,即D(0,-2),
∴OD=2,
∵AB⊥x轴于B,
∴ ,
∵AB=1,BC=2,
∴OC=4,OB=6,
∴C(4,0),A(6,1)
将C点坐标代入y=kx-2得4k-2=0,
∴k=,
∴一次函数解析式为y=x-2;
将A点坐标代入反比例函数解析式得m=6,
∴反比例函数解析式为y=;
(2)由函数图象可知:
当0<x<6时,y1<y2;
当x=6时,y1=y2;
当x>6时,y1>y2;
【点睛】
本题考查了反比例函数与一次函数的交点问题.熟悉函数图象上点的坐标特征和待定系数法解函数解析式的方法是解答本题的关键,同时注意对数形结合思想的认识和掌握.
2022年山东青岛崂山区重点达标名校中考数学最后一模试卷含解析: 这是一份2022年山东青岛崂山区重点达标名校中考数学最后一模试卷含解析,共15页。试卷主要包含了考生必须保证答题卡的整洁,方程的解是,如图,一段抛物线等内容,欢迎下载使用。
2022年成都武侯区重点名校中考数学模拟精编试卷含解析: 这是一份2022年成都武侯区重点名校中考数学模拟精编试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,计算±的值为,函数y=自变量x的取值范围是,如图,右侧立体图形的俯视图是等内容,欢迎下载使用。
2022年广东省广州市名校联盟重点名校中考数学最后一模试卷含解析: 这是一份2022年广东省广州市名校联盟重点名校中考数学最后一模试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,一、单选题等内容,欢迎下载使用。