终身会员
搜索
    上传资料 赚现金

    2022年北京三十一中中考猜题数学试卷含解析

    立即下载
    加入资料篮
    2022年北京三十一中中考猜题数学试卷含解析第1页
    2022年北京三十一中中考猜题数学试卷含解析第2页
    2022年北京三十一中中考猜题数学试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年北京三十一中中考猜题数学试卷含解析

    展开

    这是一份2022年北京三十一中中考猜题数学试卷含解析,共21页。试卷主要包含了方程的解为,下列计算正确的是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.已知a+b=4,c﹣d=﹣3,则(b+c)﹣(d﹣a)的值为( )
    A.7 B.﹣7 C.1 D.﹣1
    2.下列四个图形中,是中心对称图形的是( )
    A. B. C. D.
    3.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=3 cm,则∠BAC的度数为(  )
    A.15°                             B.75°或15°                             C.105°或15°                             D.75°或105°
    4.已知二次函数 (为常数),当自变量的值满足时,与其对应的函数值的最大值为-1,则的值为( )
    A.3或6 B.1或6 C.1或3 D.4或6
    5.如图,是的直径,弦,垂足为点,点是上的任意一点,延长交的延长线于点,连接.若,则等于( )

    A. B. C. D.
    6.如图,在四边形ABCD中,对角线 AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=10,BD=6,则四边形EFGH的面积为(  )

    A.20 B.15 C.30 D.60
    7.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为(  )

    A. B. C.2 D.2
    8.方程的解为(  )
    A.x=4 B.x=﹣3 C.x=6 D.此方程无解
    9.下列计算正确的是( )
    A. B. C. D.
    10.如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是(  )

    A.相切 B.相交 C.相离 D.无法确定
    二、填空题(共7小题,每小题3分,满分21分)
    11.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是 .
    12.如图,在ABCD中,AB=8,P、Q为对角线AC的三等分点,延长DP交AB于点M,延长MQ交CD于点N,则CN=__________.

    13.亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_____.
    14.已知点,在二次函数的图象上,若,则__________.(填“”“”“”)
    15.某文化用品商店计划同时购进一批A、B两种型号的计算器,若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元.则A型号的计算器的每只进价为_____元.
    16.如果点A(-1,4)、B(m,4)在抛物线y=a(x-1)2+h上,那么m的值为_____.
    17.如图,在梯形ACDB中,AB∥CD,∠C+∠D=90°,AB=2,CD=8,E,F分别是AB,CD的中点,则EF=_____.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m.当半圆D与数轴相切时,m=  .半圆D与数轴有两个公共点,设另一个公共点是C.
    ①直接写出m的取值范围是  .
    ②当BC=2时,求△AOB与半圆D的公共部分的面积.当△AOB的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值.

    19.(5分)如图1,反比例函数(x>0)的图象经过点A(,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.
    (1)求k的值;
    (2)求tan∠DAC的值及直线AC的解析式;
    (3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.

    20.(8分)(1)计算:;
    (2)化简,然后选一个合适的数代入求值.
    21.(10分)已知反比例函数的图象过点A(3,2).
    (1)试求该反比例函数的表达式;
    (2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.

    22.(10分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).如果小明第一题不使用“求助”,那么小明答对第一道题的概率是   .如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)
    23.(12分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D.根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:
    七年级(1)班学生总人数为_______人,扇形统计图中D类所对应扇形的圆心角为_____度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.
    24.(14分)2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化.某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图.请你根据图中提供的信息完成下列问题:
    (1)求被调查学生的人数,并将条形统计图补充完整;
    (2)求扇形统计图中的A等对应的扇形圆心角的度数;
    (3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    试题分析:原式去括号可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1.
    故选A.
    考点:代数式的求值;整体思想.
    2、D
    【解析】
    试题分析:根据中心对称图形的定义,结合选项所给图形进行判断即可.
    解:A、不是中心对称图形,故本选项错误;
    B、不是中心对称图形,故本选项错误;
    C、不是中心对称图形,故本选项错误;
    D、是中心对称图形,故本选项正确;
    故选D.
    考点:中心对称图形.
    3、C
    【解析】
    解:如图1.∵AD为直径,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=3,∠CAD=45°,则∠BAC=105°;
    如图2,.∵AD为直径,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=3,∠CAD=45°,则∠BAC=15°.故选C.

    点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用.
    4、B
    【解析】
    分析:分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.
    详解:如图,

    当h<2时,有-(2-h)2=-1,
    解得:h1=1,h2=3(舍去);
    当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;
    当h>5时,有-(5-h)2=-1,
    解得:h3=4(舍去),h4=1.
    综上所述:h的值为1或1.
    故选B.
    点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.
    5、B
    【解析】
    连接BD,利用直径得出∠ABD=65°,进而利用圆周角定理解答即可.
    【详解】
    连接BD,

    ∵AB是直径,∠BAD=25°,
    ∴∠ABD=90°-25°=65°,
    ∴∠AGD=∠ABD=65°,
    故选B.
    【点睛】
    此题考查圆周角定理,关键是利用直径得出∠ABD=65°.
    6、B
    【解析】
    有一个角是直角的平行四边形是矩形.利用中位线定理可得出四边形EFGH是矩形,根据矩形的面积公式解答即可.
    【详解】
    ∵点E、F分别为四边形ABCD的边AD、AB的中点,
    ∴EF∥BD,且EF=BD=1.
    同理求得EH∥AC∥GF,且EH=GF=AC=5,
    又∵AC⊥BD,
    ∴EF∥GH,FG∥HE且EF⊥FG.
    四边形EFGH是矩形.
    ∴四边形EFGH的面积=EF•EH=1×5=2,即四边形EFGH的面积是2.
    故选B.
    【点睛】
    本题考查的是中点四边形.解题时,利用了矩形的判定以及矩形的定理,矩形的判定定理有:
    (1)有一个角是直角的平行四边形是矩形;
    (2)有三个角是直角的四边形是矩形;
    (1)对角线互相平分且相等的四边形是矩形.
    7、D
    【解析】
    【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.
    【详解】过A作AD⊥BC于D,

    ∵△ABC是等边三角形,
    ∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,
    ∵AD⊥BC,
    ∴BD=CD=1,AD=BD=,
    ∴△ABC的面积为BC•AD==,
    S扇形BAC==,
    ∴莱洛三角形的面积S=3×﹣2×=2π﹣2,
    故选D.
    【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.
    8、C
    【解析】
    先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验.
    【详解】
    方程两边同时乘以x-2得到1-(x-2)=﹣3,解得x=6.将x=6代入x-2得6-2=4,∴x=6就是原方程的解.故选C
    【点睛】
    本题考查的是解分式方程,熟知解分式方程的基本步骤是解答此题的关键.
    9、D
    【解析】
    分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法的运算法则计算即可.
    解答:解:A、x+x=2x,选项错误;
    B、x?x=x2,选项错误;
    C、(x2)3=x6,选项错误;
    D、正确.
    故选D.
    10、B
    【解析】
    首先过点A作AM⊥BC,根据三角形面积求出AM的长,得出直线BC与DE的距离,进而得出直线与圆的位置关系.
    【详解】
    解:过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM===2.1.
    ∵D、E分别是AC、AB的中点,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2.
    ∵以DE为直径的圆半径为1.25,∴r=1.25>1.2,∴以DE为直径的圆与BC的位置关系是:相交.
    故选B.

    【点睛】
    本题考查了直线和圆的位置关系,利用中位线定理得出BC到圆心的距离与半径的大小关系是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、.
    【解析】
    试题分析:画树状图为:

    共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率==.故答案为.
    考点:列表法与树状图法.
    12、1
    【解析】
    根据平行四边形定义得:DC∥AB,由两角对应相等可得:△NQC∽△MQA,△DPC∽△MPA,列比例式可得CN的长.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴DC∥AB,
    ∴∠CNQ=∠AMQ,∠NCQ=∠MAQ,
    ∴△NQC∽△MQA,
    同理得:△DPC∽△MPA,
    ∵P、Q为对角线AC的三等分点,
    ∴,,
    设CN=x,AM=1x,
    ∴,
    解得,x=1,
    ∴CN=1,
    故答案为1.
    【点睛】
    本题考查了平行四边形的性质和相似三角形的判定和性质,熟练掌握两角对应相等,两三角形相似的判定方法是关键.
    13、4.4×1
    【解析】
    分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    详解:44000000=4.4×1,
    故答案为4.4×1.
    点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    14、
    【解析】
    抛物线的对称轴为:x=1,
    ∴当x>1时,y随x的增大而增大.
    ∴若x1>x2>1 时,y1>y2 .
    故答案为>
    15、40
    【解析】
    设A型号的计算器的每只进价为x元,B型号的计算器的每只进价为y元,根据“若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.
    【详解】
    设A型号的计算器的每只进价为x元,B型号的计算器的每只进价为y元,
    根据题意得:,
    解得:.
    答:A型号的计算器的每只进价为40元.
    【点睛】
    本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
    16、1
    【解析】
    根据函数值相等两点关于对称轴对称,可得答案.
    【详解】
    由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得:(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得:m=1.
    故答案为:1.
    【点睛】
    本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m﹣1=1﹣(﹣1)是解题的关键.
    17、3
    【解析】
    延长AC和BD,交于M点,M、E、F三点共线,EF=MF-ME.
    【详解】

    延长AC和BD,交于M点,M、E、F三点共线,∵∠C+∠D=90°,∴△MCD是直角三角形,∴MF=,同理ME=,∴EF=MF-ME=4-1=3.
    【点睛】
    本题考查了直角三角形斜边中线的性质.

    三、解答题(共7小题,满分69分)
    18、(1);(2)①;②△AOB与半圆D的公共部分的面积为;(3)tan∠AOB的值为或.
    【解析】
    (1)根据题意由勾股定理即可解答
    (2)①根据题意可知半圆D与数轴相切时,只有一个公共点,和当O、A、B三点在数轴上时,求出两种情况m的值即可
    ②如图,连接DC,得出△BCD为等边三角形,可求出扇形ADC的面积,即可解答
    (3)根据题意如图1,当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答
    如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答
    【详解】
    (1)当半圆与数轴相切时,AB⊥OB,
    由勾股定理得m= ,
    故答案为 .
    (2)①∵半圆D与数轴相切时,只有一个公共点,此时m=,
    当O、A、B三点在数轴上时,m=7+4=11,
    ∴半圆D与数轴有两个公共点时,m的取值范围为.
    故答案为.
    ②如图,连接DC,当BC=2时,

    ∵BC=CD=BD=2,
    ∴△BCD为等边三角形,
    ∴∠BDC=60°,
    ∴∠ADC=120°,
    ∴扇形ADC的面积为 ,

    ∴△AOB与半圆D的公共部分的面积为 ;
    (3)如图1,

    当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,则72﹣(4+x)2=42﹣x2,
    解得x= ,OH= ,AH= ,
    ∴tan∠AOB=,
    如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,

    设BH=x,则72﹣(4﹣x)2=42﹣x2,
    解得x= ,OH=,AH=,
    ∴tan∠AOB=.
    综合以上,可得tan∠AOB的值为或.
    【点睛】
    此题此题考勾股定理,切线的性质,等边三角形的判定和性质,三角形的内心和外心,解题关键在于作辅助线
    19、(1);(2),;(3)
    【解析】
    试题分析:(1)根据反比例函数图象上点的坐标特征易得k=2;
    (2)作BH⊥AD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=2﹣1,BH=2﹣1,可判断△ABH为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根据特殊角的三角函数值得tan∠DAC=;由于AD⊥y轴,则OD=1,AD=2,然后在Rt△OAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,﹣1),于是可根据待定系数法求出直线AC的解析式为y=x﹣1;
    (3)利用M点在反比例函数图象上,可设M点坐标为(t,)(0<t<2),由于直线l⊥x轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(t, t﹣1),则MN=﹣t+1,根据三角形面积公式得到S△CMN=•t•(﹣t+1),再进行配方得到S=﹣(t﹣)2+(0<t<2),最后根据二次函数的最值问题求解.
    试题解析:(1)把A(2,1)代入y=,得k=2×1=2;
    (2)作BH⊥AD于H,如图1,
    把B(1,a)代入反比例函数解析式y=,得a=2,
    ∴B点坐标为(1,2),
    ∴AH=2﹣1,BH=2﹣1,
    ∴△ABH为等腰直角三角形,∴∠BAH=45°,
    ∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,
    ∴tan∠DAC=tan30°=;
    ∵AD⊥y轴,∴OD=1,AD=2,∵tan∠DAC==,
    ∴CD=2,∴OC=1,
    ∴C点坐标为(0,﹣1),
    设直线AC的解析式为y=kx+b,
    把A(2,1)、C(0,﹣1)代入得 ,解得 ,
    ∴直线AC的解析式为y=x﹣1;
    (3)设M点坐标为(t,)(0<t<2),
    ∵直线l⊥x轴,与AC相交于点N,∴N点的横坐标为t,∴N点坐标为(t, t﹣1),
    ∴MN=﹣(t﹣1)=﹣t+1,
    ∴S△CMN=•t•(﹣t+1)=﹣t2+t+=﹣(t﹣)2+(0<t<2),
    ∵a=﹣<0,∴当t=时,S有最大值,最大值为.

    20、(1)0;(2),答案不唯一,只要x≠±1,0即可,当x=10时,.
    【解析】
    (1)根据有理数的乘方法则、零次幂的性质、特殊角的三角函数值计算即可;
    (2)先把括号内通分,再把除法运算化为乘法运算,然后约分,再根据分式有意义的条件把x=10代入计算即可.
    【详解】
    解:(1)原式=
    =1﹣3+2+1﹣1
    =0;
    (2)原式=
    =
    由题意可知,x≠1
    ∴当x=10时,
    原式=
    =.
    【点睛】
    本题考查实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值;分式的化简求值,掌握计算法则正确计算是本题的解题关键.
    21、(1);(2)MB=MD.
    【解析】
    (1)将A(3,2)分别代入y= ,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;
    (2)有S△OMB=S△OAC=×=3 ,可得矩形OBDC的面积为12;即OC×OB=12 ;进而可得m、n的值,故可得BM与DM的大小;比较可得其大小关系.
    【详解】
    (1)将A(3,2)代入中,得2,∴k=6,
    ∴反比例函数的表达式为.
    (2)BM=DM,理由:∵S△OMB=S△OAC=×=3,
    ∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12,
    即OC·OB=12,
    ∵OC=3,∴OB=4,即n=4,∴,
    ∴MB=,MD=,∴MB=MD.
    【点睛】
    本题考查了待定系数法求反比例函数和正比例函数解析式,反比例函数比例系数的几何意义,矩形的性质等知识.熟练掌握待定系数法是解(1)的关键,掌握反比例函数系数的几何意义是解(2)的关键.
    22、(1);(2);(3)第一题.
    【解析】
    (1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;
    (2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;
    (3)由如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;即可求得答案.
    【详解】
    (1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=;
    故答案为;
    (2)画树状图为:

    共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为;
    (3)建议小明在第一题使用“求助”.理由如下:
    小明将“求助”留在第一题,
    画树状图为:

    小明将“求助”留在第一题使用,小明顺利通关的概率=,
    因为>,
    所以建议小明在第一题使用“求助”.
    【点睛】
    本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.
    23、48;105°;
    【解析】
    试题分析:根据B的人数和百分比求出总人数,根据D的人数和总人数的得出D所占的百分比,然后得出圆心角的度数,根据总人数求出C的人数,然后补全统计图;记A类学生擅长书法的为A1,擅长绘画的为A2,根据题意画出表格,根据概率的计算法则得出答案.
    试题解析:(1)12÷25%=48(人) 14÷48×360°=105° 48-(4+12+14)=18(人),补全图形如下:

    (2)记A类学生擅长书法的为A1,擅长绘画的为A2,则可列下表:


    A1

    A1

    A2

    A2

    A1









    A1









    A2









    A2









    ∴由上表可得:
    考点:统计图、概率的计算.
    24、(1)图见解析;(2)126°;(3)1.
    【解析】
    (1)利用被调查学生的人数=了解程度达到B等的学生数÷所占比例,即可得出被调查学生的人数,由了解程度达到C等占到的比例可求出了解程度达到C等的学生数,再利用了解程度达到A等的学生数=被调查学生的人数-了解程度达到B等的学生数-了解程度达到C等的学生数-了解程度达到D等的学生数可求出了解程度达到A等的学生数,依此数据即可将条形统计图补充完整;
    (2)根据A等对应的扇形圆心角的度数=了解程度达到A等的学生数÷被调查学生的人数×360°,即可求出结论;
    (3)利用该校现有学生数×了解程度达到A等的学生所占比例,即可得出结论.
    【详解】
    (1)48÷40%=120(人),
    120×15%=18(人),
    120-48-18-12=42(人).
    将条形统计图补充完整,如图所示.

    (2)42÷120×100%×360°=126°.
    答:扇形统计图中的A等对应的扇形圆心角为126°.
    (3)1500×=1(人).
    答:该校学生对政策内容了解程度达到A等的学生有1人.
    【点睛】
    本题考查了条形统计图、扇形统计图以及用样本估计总体,观察条形统计图及扇形统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.

    相关试卷

    2022届青海省中考猜题数学试卷含解析:

    这是一份2022届青海省中考猜题数学试卷含解析,共17页。试卷主要包含了将抛物线y=﹣,五个新篮球的质量,平面直角坐标系中的点P,下列计算正确的是等内容,欢迎下载使用。

    2022届北京师大附中中考数学猜题卷含解析:

    这是一份2022届北京师大附中中考数学猜题卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列计算结果是x5的为,若a与5互为倒数,则a=等内容,欢迎下载使用。

    2021-2022学年北京市丰台区十八中学中考猜题数学试卷含解析:

    这是一份2021-2022学年北京市丰台区十八中学中考猜题数学试卷含解析,共23页。试卷主要包含了的相反数是,的算术平方根是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map