2022年广州市花都区花山重点达标名校中考适应性考试数学试题含解析
展开这是一份2022年广州市花都区花山重点达标名校中考适应性考试数学试题含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为( )
A.12m B.13.5m C.15m D.16.5m
2.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B在围成的正方体中的距离是( )
A.0 B.1 C. D.
3.下列事件中,必然事件是( )
A.抛掷一枚硬币,正面朝上
B.打开电视,正在播放广告
C.体育课上,小刚跑完1000米所用时间为1分钟
D.袋中只有4个球,且都是红球,任意摸出一球是红球
4.将2001×1999变形正确的是( )
A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+1
5.实数a在数轴上的位置如图所示,则下列说法不正确的是( )
A.a的相反数大于2 B.a的相反数是2 C.|a|>2 D.2a<0
6.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是( )
A. B. C. D.
7.在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017 D2017的边长是( )
A.()2016 B.()2017 C.()2016 D.()2017
8.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有( )
A.12 B.48 C.72 D.96
9.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.
说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.
根据上述信息,下列结论中错误的是( )
A.2017年第二季度环比有所提高
B.2017年第三季度环比有所提高
C.2018年第一季度同比有所提高
D.2018年第四季度同比有所提高
10.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是( )
A.选科目E的有5人
B.选科目A的扇形圆心角是120°
C.选科目D的人数占体育社团人数的
D.据此估计全校1000名八年级同学,选择科目B的有140人
二、填空题(本大题共6个小题,每小题3分,共18分)
11.将一张长方形纸片折叠成如图所示的形状,若∠DBC=56°,则∠1=_____°.
12.若﹣4xay+x2yb=﹣3x2y,则a+b=_____.
13.已知一个正多边形的内角和是外角和的3倍,那么这个正多边形的每个内角是_____度.
14.如图Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB的中点,P是直线BC上一点,把△BDP沿PD所在直线翻折后,点B落在点Q处,如果QD⊥BC,那么点P和点B间的距离等于____.
15.如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为_______°.
16.一组数据:1,2,a,4,5的平均数为3,则a=_____.
三、解答题(共8题,共72分)
17.(8分)如图,抛物线与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为=–1,P为抛物线上第二象限的一个动点.
(1)求抛物线的解析式并写出其顶点坐标;
(2)当点P的纵坐标为2时,求点P的横坐标;
(3)当点P在运动过程中,求四边形PABC面积最大时的值及此时点P的坐标.
18.(8分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=1.
(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.
i)求证:△CAE∽△CBF;
ii)若BE=1,AE=2,求CE的长;
(2)如图②,当四边形ABCD和EFCG均为矩形,且时,若BE=1,AE=2,CE=3,求k的值;
(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)
19.(8分) “机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.
请结合图中所给信息解答下列问题:
(1)本次共调查 名学生;扇形统计图中C所对应扇形的圆心角度数是 ;
(2)补全条形统计图;
(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?
(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.
20.(8分)如图1,抛物线y=ax2+bx﹣2与x轴交于点A(﹣1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).
(1)求该抛物线的解析式;
(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;
(3)如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标.
21.(8分)如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.
(1)求该抛物线的函数表达式;
(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;
(3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.
22.(10分)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=10t﹣5t1.小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t在什么范围时,飞行高度不低于15m?
23.(12分)如图,已知A(﹣4,),B(﹣1,m)是一次函数y=kx+b与反比例函数y=图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.
(1)求m的值及一次函数解析式;
(2)P是线段AB上的一点,连接PC、PD,若△PCA和△PDB面积相等,求点P坐标.
24.如图所示,内接于圆O,于D;
(1)如图1,当AB为直径,求证:;
(2)如图2,当AB为非直径的弦,连接OB,则(1)的结论是否成立?若成立请证明,不成立说明由;
(3)如图3,在(2)的条件下,作于E,交CD于点F,连接ED,且,若,,求CF的长度.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.
【详解】
∵∠DEF=∠BCD=90°,∠D=∠D,
∴△DEF∽△DCB,
∴,
∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,
∴由勾股定理求得DE=40cm,
∴,
∴BC=15米,
∴AB=AC+BC=1.5+15=16.5(米).
故答案为16.5m.
【点睛】
本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.
2、C
【解析】
试题分析: 本题考查了勾股定理、展开图折叠成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键.由正方形的性质和勾股定理求出AB的长,即可得出结果.
解:连接AB,如图所示:
根据题意得:∠ACB=90°,
由勾股定理得:AB==;
故选C.
考点:1.勾股定理;2.展开图折叠成几何体.
3、D
【解析】
试题解析:A. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;
B. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;
C. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;
D. 袋中只有4个球,且都是红球,任意摸出一球是红球,是必然事件,符合题意.
故选D.
点睛:事件分为确定事件和不确定事件.
必然事件和不可能事件叫做确定事件.
4、A
【解析】
原式变形后,利用平方差公式计算即可得出答案.
【详解】
解:原式=(2000+1)×(2000-1)=20002-1,
故选A.
【点睛】
此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
5、B
【解析】
试题分析:由数轴可知,a<-2,A、a的相反数>2,故本选项正确,不符合题意;B、a的相反数≠2,故本选项错误,符合题意;C、a的绝对值>2,故本选项正确,不符合题意;D、2a<0,故本选项正确,不符合题意.
故选B.
考点:实数与数轴.
6、A
【解析】
设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.
解:设乙骑自行车的平均速度为x千米/时,由题意得:
=,
故选A.
7、C
【解析】
利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.
解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…
∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,
∴D1E1=C1D1sin30°=,则B2C2===()1,
同理可得:B3C3==()2,
故正方形AnBnCnDn的边长是:()n﹣1.
则正方形A2017B2017C2017D2017的边长是:()2.
故选C.
“点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.
8、C
【解析】
解:根据图形,
身高在169.5cm~174.5cm之间的人数的百分比为:,
∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).
故选C.
9、C
【解析】
根据环比和同比的比较方法,验证每一个选项即可.
【详解】
2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;
2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;
2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;
2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D正确;
故选C.
【点睛】
本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.
10、B
【解析】
A选项先求出调查的学生人数,再求选科目E的人数来判定,
B选项先求出A科目人数,再利用×360°判定即可,
C选项中由D的人数及总人数即可判定,
D选项利用总人数乘以样本中B人数所占比例即可判定.
【详解】
解:调查的学生人数为:12÷24%=50(人),选科目E的人数为:50×10%=5(人),故A选项正确,
选科目A的人数为50﹣(7+12+10+5)=16人,选科目A的扇形圆心角是×360°=115.2°,故B选项错误,
选科目D的人数为10,总人数为50人,所以选科目D的人数占体育社团人数的,故C选项正确,
估计全校1000名八年级同学,选择科目B的有1000×=140人,故D选项正确;
故选B.
【点睛】
本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中找到准确信息.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、62
【解析】
根据折叠的性质得出∠2=∠ABD,利用平角的定义解答即可.
【详解】
解:如图所示:
由折叠可得:∠2=∠ABD,
∵∠DBC=56°,
∴∠2+∠ABD+56°=180°,
解得:∠2=62°,
∵AE//BC,
∴∠1=∠2=62°,
故答案为62.
【点睛】
本题考查了折叠变换的知识以及平行线的性质的运用,根据折叠的性质得出∠2=∠ABD是关键.
12、1
【解析】
两个单项式合并成一个单项式,说明这两个单项式为同类项.
【详解】
解:由同类项的定义可知,
a=2,b=1,
∴a+b=1.
故答案为:1.
【点睛】
本题考查的知识点为:同类项中相同字母的指数是相同的.
13、1.
【解析】
先由多边形的内角和和外角和的关系判断出多边形的边数,即可得到结论.
【详解】
设多边形的边数为n.
因为正多边形内角和为 ,正多边形外角和为
根据题意得:
解得:n=8.
∴这个正多边形的每个外角
则这个正多边形的每个内角是
故答案为:1.
【点睛】
考查多边形的内角和与外角和,熟练掌握多边形内角和公式是解题的关键.
14、2.1或2
【解析】
在Rt△ACB中,根据勾股定理可求AB的长,根据折叠的性质可得QD=BD,QP=BP,根据三角形中位线定理可得DE=AC,BD=AB,BE=BC,再在Rt△QEP中,根据勾股定理可求QP,继而可求得答案.
【详解】
如图所示:
在Rt△ACB中,∠C=90°,AC=6,BC=8,
AB==2,
由折叠的性质可得QD=BD,QP=BP,
又∵QD⊥BC,
∴DQ∥AC,
∵D是AB的中点,
∴DE=AC=3,BD=AB=1,BE=BC=4,
①当点P在DE右侧时,
∴QE=1-3=2,
在Rt△QEP中,QP2=(4-BP)2+QE2,
即QP2=(4-QP)2+22,
解得QP=2.1,
则BP=2.1.
②当点P在DE左侧时,同①知,BP=2
故答案为:2.1或2.
【点睛】
考查了折叠的性质、直角三角形的性质以及勾股定理.此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系.
15、48°
【解析】
如图,在⊙O上取一点K,连接AK、KC、OA、OC,由圆的内接四边形的性质可求出∠AKC的度数,利用圆周角定理可求出∠AOC的度数,由切线性质可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.
【详解】
如图,在⊙O上取一点K,连接AK、KC、OA、OC.
∵四边形AKCB内接于圆,
∴∠AKC+∠ABC=180°,
∵∠ABC=114°,
∴∠AKC=66°,
∴∠AOC=2∠AKC=132°,
∵DA、DC分别切⊙O于A、C两点,
∴∠OAD=∠OCB=90°,
∴∠ADC+∠AOC=180°,
∴∠ADC=48°
故答案为48°.
【点睛】
本题考查圆内接四边形的性质、周角定理及切线性质,圆内接四边形的对角互补;在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;圆的切线垂直于过切点的直径;熟练掌握相关知识是解题关键.
16、1
【解析】
依题意有:(1+2+a+4+5)÷5=1,解得a=1.故答案为1.
三、解答题(共8题,共72分)
17、(1)二次函数的解析式为,顶点坐标为(–1,4);(2)点P横坐标为––1;(3)当时,四边形PABC的面积有最大值,点P().
【解析】
试题分析: (1)已知抛物线 与轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为=﹣1,由此列出方程组,解方程组求得a、b、c的值,即可得抛物线的解析式,把解析式化为顶点式,直接写出顶点坐标即可;(2)把y=2代入解析式,解方程求得x的值,即可得点P的横坐标,从而求得点P的坐标;(3)设点P(,),则 ,根据得出四边形PABC与x之间的函数关系式,利用二次函数的性质求得x的值,即可求得点P的坐标.
试题解析:
(1)∵抛物线 与轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为=﹣1,
∴ , 解得:,
∴二次函数的解析式为 =,
∴顶点坐标为(﹣1,4)
(2)设点P(,2),
即=2,
解得=﹣1(舍去)或=﹣﹣1,
∴点P(﹣﹣1,2).
(3)设点P(,),则 ,
,
∴ =
∴当时,四边形PABC的面积有最大值.
所以点P().
点睛:本题是二次函数综合题,主要考查学生对二次函数解决动点问题综合运用能力,动点问题为中考常考题型,注意培养数形结合思想,培养综合分析归纳能力,解决这类问题要会建立二次函数模型,利用二次函数的性质解决问题.
18、(1)i)证明见试题解析;ii);(2);(3).
【解析】
(1)i)由∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,得到∠ACE=∠BCF,又由于,故△CAE∽△CBF;
ii)由,得到BF=,再由△CAE∽△CBF,得到∠CAE=∠CBF,进一步可得到∠EBF=1°,从而有,解得;
(2)连接BF,同理可得:∠EBF=1°,由,得到,,故,从而,得到,代入解方程即可;
(3)连接BF,同理可得:∠EBF=1°,过C作CH⊥AB延长线于H,可得:
,,
故,
从而有.
【详解】
解:(1)i)∵∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,∴∠ACE=∠BCF,又∵,∴△CAE∽△CBF;
ii)∵,∴BF=,∵△CAE∽△CBF,∴∠CAE=∠CBF,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴,解得;
(2)连接BF,同理可得:∠EBF=1°,∵,∴,,∴,∴,,∴,∴,解得;
(3)连接BF,同理可得:∠EBF=1°,过C作CH⊥AB延长线于H,可得:
,,
∴,
∴.
【点睛】
本题考查相似三角形的判定与性质;正方形的性质;矩形的性质;菱形的性质.
19、(1)60、90°;(2)补全条形图见解析;(3)估计全校学生中对这些交通法规“非常了解”的有320名;(4)甲和乙两名学生同时被选中的概率为.
【解析】
【分析】(1)用A的人数以及所占的百分比就可以求出调查的总人数,用C的人数除以调查的总人数后再乘以360度即可得;
(2)根据D的百分比求出D的人数,继而求出B的人数,即可补全条形统计图;
(3)用“非常了解”所占的比例乘以800即可求得;
(4)画树状图得到所有可能的情况,然后找出符合条件的情况用,利用概率公式进行求解即可得.
【详解】(1)本次调查的学生总人数为24÷40%=60人,
扇形统计图中C所对应扇形的圆心角度数是360°×=90°,
故答案为60、90°;
(2)D类型人数为60×5%=3,则B类型人数为60﹣(24+15+3)=18,
补全条形图如下:
(3)估计全校学生中对这些交通法规“非常了解”的有800×40%=320名;
(4)画树状图为:
共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为.
【点睛】本题考查了条形统计图、扇形统计图、列表法或树状图法求概率、用样本估计总体等,读懂统计图,从不同的统计图中找到必要的有关联的信息进行解题是关键.
20、(1)y=x2﹣x﹣2;(2)9;(3)Q坐标为(﹣)或(4﹣)或(2,1)或(4+,﹣).
【解析】
试题分析:把点代入抛物线,求出的值即可.
先用待定系数法求出直线BE的解析式,进而求得直线AD的解析式,设则表示出,用配方法求出它的最大值,
联立方程求出点的坐标, 最大值=,
进而计算四边形EAPD面积的最大值;
分两种情况进行讨论即可.
试题解析:(1)∵在抛物线上,
∴
解得
∴抛物线的解析式为
(2)过点P作轴交AD于点G,
∵
∴直线BE的解析式为
∵AD∥BE,设直线AD的解析式为 代入,可得
∴直线AD的解析式为
设则
则
∴当x=1时,PG的值最大,最大值为2,
由 解得 或
∴
∴ 最大值=
∵AD∥BE,
∴
∴S四边形APDE最大=S△ADP最大+
(3)①如图3﹣1中,当时,作于T.
∵
∴
∴
∴
可得
②如图3﹣2中,当时,
当时,
当时,Q3
综上所述,满足条件点点Q坐标为或或或
21、(1)y=x2+2x﹣3;(2);(3)详见解析.
【解析】
试题分析:(1)先利用抛物线的对称性确定出点B的坐标,然后设抛物线的解析式为y=a(x+3)(x-1),将点D的坐标代入求得a的值即可;
(2)过点E作EF∥y轴,交AD与点F,过点C作CH⊥EF,垂足为H.设点E(m,m2+2m-3),则F(m,-m+1),则EF=-m2-3m+4,然后依据△ACE的面积=△EFA的面积-△EFC的面积列出三角形的面积与m的函数关系式,然后利用二次函数的性质求得△ACE的最大值即可;
(3)当AD为平行四边形的对角线时.设点M的坐标为(-1,a),点N的坐标为(x,y),利用平行四边形对角线互相平分的性质可求得x的值,然后将x=-2代入求得对应的y值,然后依据=,可求得a的值;当AD为平行四边形的边时.设点M的坐标为(-1,a).则点N的坐标为(-6,a+5)或(4,a-5),将点N的坐标代入抛物线的解析式可求得a的值.
试题解析:(1)∴A(1,0),抛物线的对称轴为直线x=-1,
∴B(-3,0),
设抛物线的表达式为y=a(x+3)(x-1),
将点D(-4,5)代入,得5a=5,解得a=1,
∴抛物线的表达式为y=x2+2x-3;
(2)过点E作EF∥y轴,交AD与点F,交x轴于点G,过点C作CH⊥EF,垂足为H.
设点E(m,m2+2m-3),则F(m,-m+1).
∴EF=-m+1-m2-2m+3=-m2-3m+4.
∴S△ACE=S△EFA-S△EFC=EF·AG-EF·HC=EF·OA=- (m+)2+.
∴△ACE的面积的最大值为;
(3)当AD为平行四边形的对角线时:
设点M的坐标为(-1,a),点N的坐标为(x,y).
∴平行四边形的对角线互相平分,
∴=,=,
解得x=-2,y=5-a,
将点N的坐标代入抛物线的表达式,得5-a=-3,
解得a=8,
∴点M的坐标为(-1,8),
当AD为平行四边形的边时:
设点M的坐标为(-1,a),则点N的坐标为(-6,a+5)或(4,a-5),
∴将x=-6,y=a+5代入抛物线的表达式,得a+5=36-12-3,解得a=16,
∴M(-1,16),
将x=4,y=a-5代入抛物线的表达式,得a-5=16+8-3,解得a=26,
∴M(-1,26),
综上所述,当点M的坐标为(-1,26)或(-1,16)或(-1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形.
22、(1)小球飞行时间是1s时,小球最高为10m;(1) 1≤t≤3.
【解析】
(1)将函数解析式配方成顶点式可得最值;
(1)画图象可得t的取值.
【详解】
(1)∵h=﹣5t1+10t=﹣5(t﹣1)1+10,
∴当t=1时,h取得最大值10米;
答:小球飞行时间是1s时,小球最高为10m;
(1)如图,
由题意得:15=10t﹣5t1,
解得:t1=1,t1=3,
由图象得:当1≤t≤3时,h≥15,
则小球飞行时间1≤t≤3时,飞行高度不低于15m.
【点睛】
本题考查了二次函数的应用,主要考查了二次函数的最值问题,以及利用二次函数图象求不等式,并熟练掌握二次函数的性质是解题的关键.
23、(1)m=2;y=x+;(2)P点坐标是(﹣,).
【解析】
(1)利用待定系数法求一次函数和反比例函数的解析式;
(2)设点P的坐标为根据面积公式和已知条件列式可求得的值,并根据条件取舍,得出点P的坐标.
【详解】
解:(1)∵反比例函数的图象过点
∴
∵点B(﹣1,m)也在该反比例函数的图象上,
∴﹣1•m=﹣2,
∴m=2;
设一次函数的解析式为y=kx+b,
由y=kx+b的图象过点A,B(﹣1,2),则
解得:
∴一次函数的解析式为
(2)连接PC、PD,如图,设
∵△PCA和△PDB面积相等,
∴
解得:
∴P点坐标是
【点睛】
本题考查待定系数法求反比例函数以及一次函数解析式,反比例函数与一次函数的交点问题,熟练掌握待定系数法是解题的关键.
24、(1)见解析;(2)成立;(3)
【解析】
(1)根据圆周角定理求出∠ACB=90°,求出∠ADC=90°,再根据三角形内角和定理求出即可;
(2)根据圆周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;
(3)分别延长AE、CD交⊙O于H、K,连接HK、CH、AK,在AD上取DG=BD,延长CG交AK于M,延长KO交⊙O于N,连接CN、AN,求出关于a的方程,再求出a即可.
【详解】
(1)证明:∵AB为直径,
∴,
∵于D,
∴,
∴,,
∴;
(2)成立,
证明:连接OC,
由圆周角定理得:,
∵,
∴,
∵,
∴,
∴;
(3)分别延长AE、CD交⊙O于H、K,连接HK、CH、AK,
∵,,
∴,
∴,,
∵,
∴,
∵根据圆周角定理得:,
∴,
∴由三角形内角和定理得:,
∴,
∴,
同理,
∵,
∴,
在AD上取,延长CG交AK于M,则,
,
∴,
∴,
延长KO交⊙O于N,连接CN、AN,
则,
∴,
∵,
∴,
∴四边形CGAN是平行四边形,
∴,
作于T,
则T为CK的中点,
∵O为KN的中点,
∴,
∵,,
∴由勾股定理得:,
∴,
作直径HS,连接KS,
∵,,
∴由勾股定理得:,
∴,
∴,
设,,
∴,,
∵,
∴,
解得:,
∴,
∴.
【点睛】
本题考查了垂径定理、解直角三角形、等腰三角形的性质、圆周角定理、勾股定理等知识点,能综合运用知识点进行推理是解此题的关键,综合性比较强,难度偏大.
相关试卷
这是一份广州市花都区花山重点达标名校2022年初中数学毕业考试模拟冲刺卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份广州市花都区花山重点达标名校2021-2022学年中考数学全真模拟试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,的相反数是,估计﹣1的值为等内容,欢迎下载使用。
这是一份2022年广州市花都区花山中考五模数学试题含解析,共21页。试卷主要包含了已知,计算的结果是等内容,欢迎下载使用。