![2022年广西壮族自治区柳州市中考数学押题卷含解析01](http://www.enxinlong.com/img-preview/2/3/13069265/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年广西壮族自治区柳州市中考数学押题卷含解析02](http://www.enxinlong.com/img-preview/2/3/13069265/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年广西壮族自治区柳州市中考数学押题卷含解析03](http://www.enxinlong.com/img-preview/2/3/13069265/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022年广西壮族自治区柳州市中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为( )
A.﹣=10 B.﹣=10
C.﹣=10 D. +=10
2.已知一个正多边形的一个外角为36°,则这个正多边形的边数是( )
A.8 B.9 C.10 D.11
3.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为( )元.
A.+4 B.﹣9 C.﹣4 D.+9
4.下列说法中,正确的是( )
A.两个全等三角形,一定是轴对称的
B.两个轴对称的三角形,一定是全等的
C.三角形的一条中线把三角形分成以中线为轴对称的两个图形
D.三角形的一条高把三角形分成以高线为轴对称的两个图形
5.若分式有意义,则x的取值范围是( )
A.x>3 B.x<3 C.x≠3 D.x=3
6.如图,在▱ABCD中,AB=1,AC=4,对角线AC与BD相交于点O,点E是BC的中点,连接AE交BD于点F.若AC⊥AB,则FD的长为( )
A.2 B.3 C.4 D.6
7.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:
班级 | 参加人数 | 平均数 | 中位数 | 方差 |
甲 | 55 | 135 | 149 | 191 |
乙 | 55 | 135 | 151 | 110 |
某同学分析上表后得出如下结论:
①甲、乙两班学生的平均成绩相同;
②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);
③甲班成绩的波动比乙班大.
上述结论中,正确的是( )
A.①② B.②③ C.①③ D.①②③
8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )
A.① B.② C.③ D.④
9.下列条件中不能判定三角形全等的是( )
A.两角和其中一角的对边对应相等 B.三条边对应相等
C.两边和它们的夹角对应相等 D.三个角对应相等
10.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为( )
A.60 n mile B.60 n mile C.30 n mile D.30 n mile
二、填空题(共7小题,每小题3分,满分21分)
11.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为_____ m.
12.一次函数y=kx+b(k≠0)的图象如图所示,那么不等式kx+b<0的解集是_____.
13.如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=1.如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是______.
14.已知a+b=1,那么a2-b2+2b=________.
15.一个圆的半径为2,弦长是2,求这条弦所对的圆周角是_____.
16.如图的三角形纸片中,,沿过点的直线折叠这个三角形,使点落在边上的点处,折痕为,则的周长为__________.
17.如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是__________cm.
三、解答题(共7小题,满分69分)
18.(10分)如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.判断直线CD和⊙O的位置关系,并说明理由.过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.
19.(5分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.用树状图或列表法求出小王去的概率;小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.
20.(8分)某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台.
(1)求y关于x的函数解析式;
(2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?
21.(10分)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°.求这两座建筑物的高度(结果保留根号).
22.(10分)先化简,再求值:(﹣1)÷,其中x=1.
23.(12分)解不等式组:,并把解集在数轴上表示出来.
24.(14分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.求二次函数y=ax2+2x+c的表达式;连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数=10亩,根据等量关系列出方程即可.
【详解】
设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,
根据题意列方程为:.
故选:.
【点睛】
此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
2、C
【解析】
试题分析:已知一个正多边形的一个外角为,则这个正多边形的边数是360÷36=10,故选C.
考点:多边形的内角和外角.
3、B
【解析】
收入和支出是两个相反的概念,故两个数字分别为正数和负数.
【详解】
收入13元记为+13元,那么支出9元记作-9元
【点睛】
本题主要考查了正负数的运用,熟练掌握正负数的概念是本题的关键.
4、B
【解析】根据轴对称图形的概念对各选项分析判断即可得解.
解:A. 两个全等三角形,一定是轴对称的错误,三角形全等位置上不一定关于某一直线对称,故本选项错误;
B. 两个轴对称的三角形,一定全等,正确;
C. 三角形的一条中线把三角形分成以中线为轴对称的两个图形,错误;
D. 三角形的一条高把三角形分成以高线为轴对称的两个图形,错误.
故选B.
5、C
【解析】
试题分析:∵分式有意义,∴x﹣3≠0,∴x≠3;故选C.
考点:分式有意义的条件.
6、C
【解析】
利用平行四边形的性质得出△ADF∽△EBF,得出=,再根据勾股定理求出BO的长,进而得出答案.
【详解】
解:∵在□ABCD中,对角线AC、BD相交于O,
∴BO=DO,AO=OC,AD∥BC,
∴△ADF∽△EBF,
∴=,
∵AC=4,
∴AO=2,
∵AB=1,AC⊥AB,
∴BO===3,
∴BD=6,
∵E是BC的中点,
∴==,
∴BF=2, FD=4.
故选C.
【点睛】
本题考查了勾股定理与相似三角形的判定与性质,解题的关键是熟练的掌握勾股定理与相似三角形的判定与性质.
7、D
【解析】
分析:根据平均数、中位数、方差的定义即可判断;
详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;
根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;
根据方差可知,甲班成绩的波动比乙班大.
故①②③正确,
故选D.
点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
8、A
【解析】
由平面图形的折叠及正方体的表面展开图的特点解题.
【详解】
将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,
故选A.
【点睛】
本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.
9、D
【解析】
解:A、符合AAS,能判定三角形全等;
B、符合SSS,能判定三角形全等;;
C、符合SAS,能判定三角形全等;
D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;
故选D.
10、B
【解析】
如图,作PE⊥AB于E.
在Rt△PAE中,∵∠PAE=45°,PA=60n mile,
∴PE=AE=×60=n mile,
在Rt△PBE中,∵∠B=30°,
∴PB=2PE=n mile.
故选B.
二、填空题(共7小题,每小题3分,满分21分)
11、7.5
【解析】
试题解析:当旋转到达地面时,为最短影长,等于AB,
∵最小值3m,
∴AB=3m,
∵影长最大时,木杆与光线垂直,
即AC=5m,
∴BC=4,
又可得△CAB∽△CFE,
∴
∵AE=5m,
∴
解得:EF=7.5m.
故答案为7.5.
点睛:相似三角形的性质:相似三角形的对应边成比例.
12、x>﹣1.
【解析】
一次函数y=kx+b的图象在x轴下方时,y<0,再根据图象写出解集即可.
【详解】
当不等式kx+b<0时,一次函数y=kx+b的图象在x轴下方,因此x>﹣1.
故答案为:x>﹣1.
【点睛】
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k≠0)在x轴上(或下)方部分所有的点的横坐标所构成的集合.
13、
【解析】
因为以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交,圆心距满足关系式:|R-r|<d<R+r,求得圆D与圆O的半径代入计算即可.
【详解】
连接OA、OD,过O点作ON⊥AE,OM⊥AF.
AN=AE=1,AM=AF=2,MD=AD-AM=3
∵四边形ABCD是矩形
∴∠BAD=∠ANO=∠AMO=90°,
∴四边形OMAN是矩形
∴OM=AN=1
∴OA=,OD=
∵以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交
∴
【点睛】
本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键.
14、1
【解析】
解:∵a+b=1,
∴原式=
故答案为1.
【点睛】
本题考查的是平方差公式的灵活运用.
15、60°或120°
【解析】
首先根据题意画出图形,过点O作OD⊥AB于点D, 通过垂径定理, 即可推出∠AOD的度数, 求得∠AOB的度数, 然后根据圆周角定理,即可推出∠AMB和∠ANB的度数.
【详解】
解:如图:
连接OA,过点O作OD⊥AB 于点D,
OA=2,AB=,AD=BD=,
AD:OA=:2,
∠AOD=,∠ AOB=,
∠AMB=,∠ANB=.
故答案为: 或.
【点睛】
本题主要考查垂径定理与圆周角定理,注意弦所对的圆周角有两个,他们互为补角.
16、
【解析】
由折叠的性质,可知:BE=BC,DE=DC,通过等量代换,即可得到答案.
【详解】
∵沿过点的直线折叠这个三角形,使点落在边上的点处,折痕为,
∴BE=BC,DE=DC,
∴的周长=AD+DE+AE=AD+DC+AE=AC+AE=AB+BC+AC-BC-BE=8+6+5-6-6=7cm,
故答案是:
【点睛】
本题主要考查折叠的性质,根据三角形的周长定义,进行等量代换是解题的关键.
17、
【解析】
连接OA,作OM⊥AB于点M,
∵正六边形ABCDEF的外接圆半径为2cm
∴正六边形的半径为2 cm, 即OA=2cm
在正六边形ABCDEF中,∠AOM=30°,
∴正六边形的边心距是OM= cos30°×OA=(cm)
故答案为.
三、解答题(共7小题,满分69分)
18、解:(1)直线CD和⊙O的位置关系是相切,理由见解析
(2)BE=1.
【解析】
试题分析:(1)连接OD,可知由直径所对的圆周角是直角可得∠DAB+∠DBA=90°,再由∠CDA=∠CBD可得∠CDA+∠ADO=90°,从而得∠CDO=90°,根据切线的判定即可得出;
(2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可.
试题解析:(1)直线CD和⊙O的位置关系是相切,
理由是:连接OD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠DAB+∠DBA=90°,
∵∠CDA=∠CBD,
∴∠DAB+∠CDA=90°,
∵OD=OA,
∴∠DAB=∠ADO,
∴∠CDA+∠ADO=90°,
即OD⊥CE,
∴直线CD是⊙O的切线,
即直线CD和⊙O的位置关系是相切;
(2)∵AC=2,⊙O的半径是3,
∴OC=2+3=5,OD=3,
在Rt△CDO中,由勾股定理得:CD=4,
∵CE切⊙O于D,EB切⊙O于B,
∴DE=EB,∠CBE=90°,
设DE=EB=x,
在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,
则(4+x)2=x2+(5+3)2,
解得:x=1,
即BE=1.
考点:1、切线的判定与性质;2、切线长定理;3、勾股定理;4、圆周角定理
19、(1);(2)规则是公平的;
【解析】
试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;
(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.
试题解析:(1)画树状图为:
共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,
所以P(小王)=;
(2)不公平,理由如下:
∵P(小王)=,P(小李)=,≠,
∴规则不公平.
点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
20、(1)y=0.2x+14(0<x<35);(2)该公司至少需要投入资金16.4万元.
【解析】
(1)根据题意列出关于x、y的方程,整理得到y关于x的函数解析式;
(2)解不等式求出x的范围,根据一次函数的性质计算即可.
【详解】
解:(1)由题意得,0.6x+0.4×(35﹣x)=y,
整理得,y=0.2x+14(0<x<35);
(2)由题意得,35﹣x≤2x,
解得,x≥,
则x的最小整数为12,
∵k=0.2>0,
∴y随x的增大而增大,
∴当x=12时,y有最小值16.4,
答:该公司至少需要投入资金16.4万元.
【点睛】
本题考查的是一次函数的应用、一元一次不等式的应用,掌握一次函数的性质是解题的关键.
21、甲建筑物的高AB为(30-30)m,乙建筑物的高DC为30m
【解析】
如图,过A作AF⊥CD于点F,
在Rt△BCD中,∠DBC=60°,BC=30m,
∵=tan∠DBC,
∴CD=BC•tan60°=30m,
∴乙建筑物的高度为30m;
在Rt△AFD中,∠DAF=45°,
∴DF=AF=BC=30m,
∴AB=CF=CD﹣DF=(30﹣30)m,
∴甲建筑物的高度为(30﹣30)m.
22、-1.
【解析】
先化简题目中的式子,再将x的值代入化简后的式子即可解答本题.
【详解】
解:原式=,
=,
=,
=﹣,
当x=1时,
原式=﹣=﹣1.
【点睛】
本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则
23、x≥
【解析】
分析:分别求解两个不等式,然后按照不等式的确定方法求解出不等式组的解集,然后表示在数轴上即可.
详解:,
由①得,x>﹣2;
由②得,x≥,
故此不等式组的解集为:x≥.
在数轴上表示为:.
点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
24、(1)y=﹣x2+2x+3(2)(,)(3)当点P的坐标为(,)时,四边形ACPB的最大面积值为
【解析】
(1)根据待定系数法,可得函数解析式;
(2)根据菱形的对角线互相垂直且平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得P点坐标;
(3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.
【详解】
(1)将点B和点C的坐标代入函数解析式,得
解得
二次函数的解析式为y=﹣x2+2x+3;
(2)若四边形POP′C为菱形,则点P在线段CO的垂直平分线上,
如图1,连接PP′,则PE⊥CO,垂足为E,
∵C(0,3),
∴
∴点P的纵坐标,
当时,即
解得(不合题意,舍),
∴点P的坐标为
(3)如图2,
P在抛物线上,设P(m,﹣m2+2m+3),
设直线BC的解析式为y=kx+b,
将点B和点C的坐标代入函数解析式,得
解得
直线BC的解析为y=﹣x+3,
设点Q的坐标为(m,﹣m+3),
PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.
当y=0时,﹣x2+2x+3=0,
解得x1=﹣1,x2=3,
OA=1,
S四边形ABPC=S△ABC+S△PCQ+S△PBQ
当m=时,四边形ABPC的面积最大.
当m=时,,即P点的坐标为
当点P的坐标为时,四边形ACPB的最大面积值为.
【点睛】
本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用菱形的性质得出P点的纵坐标,又利用了自变量与函数值的对应关系;解(3)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质.
广西壮族自治区桂平市市级名校2021-2022学年中考数学押题卷含解析: 这是一份广西壮族自治区桂平市市级名校2021-2022学年中考数学押题卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,化简的结果是,的相反数是等内容,欢迎下载使用。
广西壮族自治区钦州市浦北县2021-2022学年中考数学押题卷含解析: 这是一份广西壮族自治区钦州市浦北县2021-2022学年中考数学押题卷含解析,共21页。试卷主要包含了二次函数等内容,欢迎下载使用。
广西壮族自治区湾县市级名校2021-2022学年中考押题数学预测卷含解析: 这是一份广西壮族自治区湾县市级名校2021-2022学年中考押题数学预测卷含解析,共21页。试卷主要包含了下列说法正确的是,某校40名学生参加科普知识竞赛等内容,欢迎下载使用。