


2022年河南省商丘市永城市实验中学中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.已知一个多边形的内角和是外角和的3倍,则这个多边形是( )
A.五边形 B.六边形 C.七边形 D.八边形
2.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )
A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b
3.已知⊙O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧的中点,若△POC为直角三角形,则PB的长度( )
A.1 B.5 C.1或5 D.2或4
4.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是( )
A. B. C. D.
5.的倒数的绝对值是( )
A. B. C. D.
6.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )
A.60° B.65° C.55° D.50°
7.如图,直立于地面上的电线杆 AB,在阳光下落在水平地面和坡面上的影子分别是
BC、CD,测得 BC=6 米,CD=4 米,∠BCD=150°,在 D 处测得电线杆顶端 A 的仰 角为 30°,则电线杆 AB 的高度为( )
A. B. C. D.
8.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是( )
A.70° B.80° C.110° D.140°
9.如图所示几何体的主视图是( )
A. B. C. D.
10.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是( )
A.(2010,2) B.(2010,﹣2) C.(2012,﹣2) D.(0,2)
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是________.
12.如图,已知,第一象限内的点A在反比例函数y=的图象上,第四象限内的点B在反比例函数y=的图象上.且OA⊥OB,∠OAB=60°,则k的值为_________.
13.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为_____.(结果保留π)
14.关于x的方程(m﹣5)x2﹣3x﹣1=0有两个实数根,则m满足_____.
15.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,点D是边AB上的动点,将△ACD沿CD所在的直线折叠至△CDA的位置,CA'交AB于点E.若△A'ED为直角三角形,则AD的长为_____.
16.在一次数学测试中,同年级人数相同的甲、乙两个班的成绩统计如下表:
班级
平均分
中位数
方差
甲班
乙班
数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下:
这次数学测试成绩中,甲、乙两个班的平均水平相同;
甲班学生中数学成绩95分及以上的人数少;
乙班学生的数学成绩比较整齐,分化较小.
上述评估中,正确的是______填序号
三、解答题(共8题,共72分)
17.(8分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).
(1)分别求这两个函数的表达式;
(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.
18.(8分)用你发现的规律解答下列问题.
┅┅计算 .探究 .(用含有的式子表示)若的值为,求的值.
19.(8分)为了解黔东南州某县中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频数统计表和频数分布直方图.
成绩分组
组中值
频数
25≤x<30
27.5
4
30≤x<35
32.5
m
35≤x<40
37.5
24
40≤x<45
a
36
45≤x<50
47.5
n
50≤x<55
52.5
4
(1)求a、m、n的值,并补全频数分布直方图;
(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?
20.(8分)在平面直角坐标系xOy中,抛物线y=ax2+2ax+c(其中a、c为常数,且a<0)与x轴交于点A(﹣3,0),与y轴交于点B,此抛物线顶点C到x轴的距离为1.
(1)求抛物线的表达式;
(2)求∠CAB的正切值;
(3)如果点P是x轴上的一点,且∠ABP=∠CAO,直接写出点P的坐标.
21.(8分)如图,在正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边上的动点,且AE=BF=CG=DH.
(1)求证:△AEH≌△CGF;
(2)在点E、F、G、H运动过程中,判断直线EG是否经过某一个定点,如果是,请证明你的结论;如果不是,请说明理由
22.(10分)先化简,再求值:,再从的范围内选取一个你最喜欢的值代入,求值.
23.(12分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:
本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____ ;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.
24.已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据多边形的外角和是360°,以及多边形的内角和定理即可求解.
【详解】
设多边形的边数是n,则
(n−2)⋅180=3×360,
解得:n=8.
故选D.
【点睛】
此题考查多边形内角与外角,解题关键在于掌握其定理.
2、D
【解析】
试题分析:A.如图所示:﹣3<a<﹣2,故此选项错误;
B.如图所示:﹣3<a<﹣2,故此选项错误;
C.如图所示:1<b<2,则﹣2<﹣b<﹣1,又﹣3<a<﹣2,故a<﹣b,故此选项错误;
D.由选项C可得,此选项正确.
故选D.
考点:实数与数轴
3、C
【解析】
由点C是劣弧AB的中点,得到OC垂直平分AB,求得DA=DB=3,根据勾股定理得到OD==1,若△POC为直角三角形,只能是∠OPC=90°,则根据相似三角形的性质得到PD=2,于是得到结论.
【详解】
∵点C是劣弧AB的中点,
∴OC垂直平分AB,
∴DA=DB=3,
∴OD=,
若△POC为直角三角形,只能是∠OPC=90°,
则△POD∽△CPD,
∴,
∴PD2=4×1=4,
∴PD=2,
∴PB=3﹣2=1,
根据对称性得,
当P在OC的左侧时,PB=3+2=5,
∴PB的长度为1或5.
故选C.
【点睛】
考查了圆周角,弧,弦的关系,勾股定理,垂径定理,正确左侧图形是解题的关键.
4、D
【解析】
A选项:
∠1+∠2=360°-90°×2=180°;
B选项:
∵∠2+∠3=90°,∠3+∠4=90°,
∴∠2=∠4,
∵∠1+∠4=180°,
∴∠1+∠2=180°;
C选项:
∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,
∵∠1+∠EFC=180°,∴∠1+∠2=180°;
D选项:∠1和∠2不一定互补.
故选D.
点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系.
5、D
【解析】
直接利用倒数的定义结合绝对值的性质分析得出答案.
【详解】
解:−的倒数为−,则−的绝对值是:.
故答案选:D.
【点睛】
本题考查了倒数的定义与绝对值的性质,解题的关键是熟练的掌握倒数的定义与绝对值的性质.
6、A
【解析】
试题分析:根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.
解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,
∴∠BCD+∠CDE=540°﹣300°=240°,
∵∠BCD、∠CDE的平分线在五边形内相交于点O,
∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,
∴∠P=180°﹣120°=60°.
故选A.
考点:多边形内角与外角;三角形内角和定理.
7、B
【解析】
延长AD交BC的延长线于E,作DF⊥BE于F,
∵∠BCD=150°,
∴∠DCF=30°,又CD=4,
∴DF=2,CF= =2,
由题意得∠E=30°,
∴EF= ,
∴BE=BC+CF+EF=6+4,
∴AB=BE×tanE=(6+4)×=(2+4)米,
即电线杆的高度为(2+4)米.
点睛:本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
8、C
【解析】
分析:作对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.
详解:作对的圆周角∠APC,如图,
∵∠P=∠AOC=×140°=70°
∵∠P+∠B=180°,
∴∠B=180°﹣70°=110°,
故选:C.
点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
9、C
【解析】
从正面看几何体,确定出主视图即可.
【详解】
解:几何体的主视图为
故选C.
【点睛】
本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.
10、B
【解析】
分析:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,结合中点坐标公式即可求得点P1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得答案.
详解:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,
又∵A的坐标是(1,1),
结合中点坐标公式可得P1的坐标是(1,0);
同理P1的坐标是(1,﹣1),记P1(a1,b1),其中a1=1,b1=﹣1.
根据对称关系,依次可以求得:
P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),
令P6(a6,b1),同样可以求得,点P10的坐标为(4+a6,b1),即P10(4×1+a1,b1),
∵1010=4×501+1,
∴点P1010的坐标是(1010,﹣1),
故选:B.
点睛:本题考查了对称的性质,坐标与图形的变化---旋转,根据条件求出前边几个点的坐标,得到规律是解题关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、8
【解析】
如图,连接OC,在在Rt△ACO中,由tan∠OAB=,求出AC即可解决问题.
【详解】
解:如图,连接OC.
∵AB是⊙O切线,
∴OC⊥AB,AC=BC,
在Rt△ACO中,∵∠ACO=90°,OC=OD=2
tan∠OAB=,
∴,
∴AC=4,
∴AB=2AC=8,
故答案为8
【点睛】
本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,属于中考常考题型.
12、-6
【解析】
如图,作AC⊥x轴,BD⊥x轴,
∵OA⊥OB,
∴∠AOB=90°,
∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,
∴∠OAC=∠BOD,
∴△ACO∽△ODB,
∴,
∵∠OAB=60°,
∴,
设A(x,),
∴BD=OC=x,OD=AC=,
∴B(x,-),
把点B代入y=得,-=,解得k=-6,
故答案为-6.
13、πcm1.
【解析】
求出AD,先分别求出两个扇形的面积,再求出答案即可.
【详解】
解:∵AB长为15cm,贴纸部分的宽BD为15cm,
∴AD=10cm,
∴贴纸的面积为S=S扇形ABC﹣S扇形ADE=(cm1),
故答案为πcm1.
【点睛】
本题考查了扇形的面积计算,能熟记扇形的面积公式是解此题的关键.
14、m≥且m≠1.
【解析】
根据一元二次方程的定义和判别式的意义得到m﹣1≠0且 然后求出两个不等式的公共部分即可.
【详解】
解:根据题意得m﹣1≠0且
解得且m≠1.
故答案为: 且m≠1.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
15、3﹣或1
【解析】
分两种情况:情况一:如图一所示,当∠A'DE=90°时;
情况二:如图二所示,当∠A'ED=90°时.
【详解】
解:如图,当∠A'DE=90°时,△A'ED为直角三角形,
∵∠A'=∠A=30°,
∴∠A'ED=60°=∠BEC=∠B,
∴△BEC是等边三角形,
∴BE=BC=1,
又∵Rt△ABC中,AB=1BC=4,
∴AE=1,
设AD=A'D=x,则DE=1﹣x,
∵Rt△A'DE中,A'D=DE,
∴x=(1﹣x),
解得x=3﹣,
即AD的长为3﹣;
如图,当∠A'ED=90°时,△A'ED为直角三角形,
此时∠BEC=90°,∠B=60°,
∴∠BCE=30°,
∴BE=BC=1,
又∵Rt△ABC中,AB=1BC=4,
∴AE=4﹣1=3,
∴DE=3﹣x,
设AD=A'D=x,则
Rt△A'DE中,A'D=1DE,即x=1(3﹣x),
解得x=1,
即AD的长为1;
综上所述,即AD的长为3﹣或1.
故答案为3﹣或1.
【点睛】
本题考查了翻折变换,勾股定理,等腰直角三角形的判定和性质等知识,添加辅助线,构造直角三角形,学会运用分类讨论是解题的关键.
16、
【解析】
根据平均数、中位数和方差的意义分别对每一项进行解答,即可得出答案.
【详解】
解:∵甲班的平均成绩是92.5分,乙班的平均成绩是92.5分,
∴这次数学测试成绩中,甲、乙两个班的平均水平相同;
故正确;
∵甲班的中位数是95.5分,乙班的中位数是90.5分,
甲班学生中数学成绩95分及以上的人数多,
故错误;
∵甲班的方差是41.25分,乙班的方差是36.06分,
甲班的方差大于乙班的方差,
乙班学生的数学成绩比较整齐,分化较小;
故正确;
上述评估中,正确的是;
故答案为:.
【点睛】
本题考查平均数、中位数和方差,平均数表示一组数据的平均程度中位数是将一组数据从小到大或从大到小重新排列后,最中间的那个数或最中间两个数的平均数;方差是用来衡量一组数据波动大小的量.
三、解答题(共8题,共72分)
17、(1)反比例函数表达式为,正比例函数表达式为;
(2),.
【解析】
试题分析:(1)将点A坐标(2,-2)分别代入y=kx、y=求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,可将△ABC的面积转化为△OBC的面积.
试题解析:()把代入反比例函数表达式,
得,解得,
∴反比例函数表达式为,
把代入正比例函数,
得,解得,
∴正比例函数表达式为.
()直线由直线向上平移个单位所得,
∴直线的表达式为,
由,解得或,
∵在第四象限,
∴,
连接,
∵,
,
,
.
18、解:(1);(2);(3)n=17.
【解析】
(1)、根据给出的式子将各式进行拆开,然后得出答案;(2)、根据给出的式子得出规律,然后根据规律进行计算;(3)、根据题意将式子进行展开,然后列出关于n的一元一次方程,从而得出n的值.
【详解】
(1)原式=1−+−+−+−+−=1−=.
故答案为;
(2)原式=1−+−+−+…+−=1−=
故答案为;
(3) +++…+
= (1−+−+−+…+−)
=(1−)
=
=
解得:n=17.
考点:规律题.
19、(1)详见解析(2)2400
【解析】
(1)求出组距,然后利用37.5加上组距就是a的值;根据频数分布直方图即可求得m的值,然后利用总人数100减去其它各组的人数就是n的值.
(2)利用总人数4000乘以优秀的人数所占的比例即可求得优秀的人数.
【详解】
解:(1)组距是:37.5﹣32.5=5,则a=37.5+5=42.5;
根据频数分布直方图可得:m=12;
则n=100﹣4﹣12﹣24﹣36﹣4=1.
补全频数分布直方图如下:
(2)∵优秀的人数所占的比例是:=0.6,
∴该县中考体育成绩优秀学生人数约为:4000×0.6=2400(人)
20、(4)y=﹣x4﹣4x+3;(4);(3)点P的坐标是(4,0)
【解析】
(4) 先求得抛物线的对称轴方程, 然后再求得点C的坐标,设抛物线的解析式为y=a(x+4)4+4,将点 (-3, 0) 代入求得a的值即可;
(4) 先求得A、 B、 C的坐标, 然后依据两点间的距离公式可得到BC、AB,AC的长,然后依据勾股定理的逆定理可证明∠ABC=90°,最后,依据锐角三角函数的定义求解即可;
(3) 连接BC,可证得△AOB是等腰直角三角形,△ACB∽△BPO,可得代入个数据可得OP的值,可得P点坐标.
【详解】
解:(4)由题意得,抛物线y=ax4+4ax+c的对称轴是直线,
∵a<0,抛物线开口向下,又与x轴有交点,
∴抛物线的顶点C在x轴的上方,
由于抛物线顶点C到x轴的距离为4,因此顶点C的坐标是(﹣4,4).
可设此抛物线的表达式是y=a(x+4)4+4,
由于此抛物线与x轴的交点A的坐标是(﹣3,0),可得a=﹣4.
因此,抛物线的表达式是y=﹣x4﹣4x+3.
(4)如图4,
点B的坐标是(0,3).连接BC.
∵AB4=34+34=48,BC4=44+44=4,AC4=44+44=40,
得AB4+BC4=AC4.
∴△ABC为直角三角形,∠ABC=90°,
所以tan∠CAB=.
即∠CAB的正切值等于.
(3)如图4,连接BC,
∵OA=OB=3,∠AOB=90°,
∴△AOB是等腰直角三角形,
∴∠BAP=∠ABO=45°,
∵∠CAO=∠ABP,
∴∠CAB=∠OBP,
∵∠ABC=∠BOP=90°,
∴△ACB∽△BPO,
∴,
∴,OP=4,
∴点P的坐标是(4,0).
【点睛】
本题主要考查二次函数的图像与性质,综合性大.
21、(1)见解析;(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由见解析.
【解析】
分析:(1)由正方形的性质得出∠A=∠C=90°,AB=BC=CD=DA,由AE=BF=CG=DH证出AH=CF,由SAS证明△AEH≌△CGF即可求解;
(2)连接AC、EG,交点为O;先证明△AOE≌△COG,得出OA=OC,证出O为对角线AC、BD的交点,即O为正方形的中心.
详解:(1)证明:∵四边形ABCD是正方形,
∴∠A=∠C=90°,AB=BC=CD=DA,
∵AE=BF=CG=DH,
∴AH=CF,
在△AEH与△CGF中,
AH=CF,∠A=∠C,AE=CG,
∴△AEH≌△CGF(SAS);
(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由如下:
连接AC、EG,交点为O;如图所示:
∵四边形ABCD是正方形,
∴AB∥CD,
∴∠OAE=∠OCG,
在△AOE和△COG中,
∠OAE=∠OCG,∠AOE=∠COG,AE=CG,
∴△AOE≌△COG(AAS),
∴OA=OC,OE=OG,
即O为AC的中点,
∵正方形的对角线互相平分,
∴O为对角线AC、BD的交点,即O为正方形的中心.
点睛:考查了正方形的性质与判定、全等三角形的判定与性质等知识;本题综合性强,有一定难度,特别是(2)中,需要通过作辅助线证明三角形全等才能得出结果.
22、原式=,把x=2代入的原式=1.
【解析】
试题分析:先对原分式的分子、分母进行因式分解,然后按顺序进行乘除法运算、加减法运算,最后选取有意义的数值代入计算即可.
试题解析:原式= =
当x=2时,原式=1
23、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;
【解析】
(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.
(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.
(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.
【详解】
(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,
m=100﹣(24+48+8+8)=12,
故答案为250、12;
(2)平均数为=1.38(h),
众数为1.5h,中位数为=1.5h;
(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.
【点睛】
本题主要考查数据的收集、 处理以及统计图表.
24、详见解析
【解析】
根据平行四边形的性质和已知条件证明△ABE≌△CDF,再利用全等三角形的性质:即可得到AE=CF.
【详解】
证:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF. (其他证法也可)
2024年河南省商丘市永城实验中学中考数学一模试卷(含解析): 这是一份2024年河南省商丘市永城实验中学中考数学一模试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年河南省商丘市永城市八年级(上)期末数学试卷(含解析): 这是一份2023-2024学年河南省商丘市永城市八年级(上)期末数学试卷(含解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年河南省商丘市永城市八年级(上)期末数学试卷(含解析): 这是一份2023-2024学年河南省商丘市永城市八年级(上)期末数学试卷(含解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。