|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年湖北省咸宁市名校中考数学押题卷含解析
    立即下载
    加入资料篮
    2022年湖北省咸宁市名校中考数学押题卷含解析01
    2022年湖北省咸宁市名校中考数学押题卷含解析02
    2022年湖北省咸宁市名校中考数学押题卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖北省咸宁市名校中考数学押题卷含解析

    展开
    这是一份2022年湖北省咸宁市名校中考数学押题卷含解析,共21页。试卷主要包含了如图,在平面直角坐标系中,A,下列说法不正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列运算正确的是( )
    A.(a2)3 =a5 B. C.(3ab)2=6a2b2 D.a6÷a3 =a2
    2.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个黄球的概率为(  )
    A. B. C. D.
    3.不等式组的解集是(  )
    A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤2
    4.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为(  )

    A.5 B.6 C.7 D.8
    5.如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是(  )

    A. 或 
    B. 或 
    C. 或
    D.
    6.如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为(  )

    A. B. C. D.
    7.如图,已知AB∥CD,DE⊥AF,垂足为E,若∠CAB=50°,则∠D的度数为(  )

    A.30° B.40° C.50° D.60°
    8.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是(  )

    A.130° B.120° C.110° D.100°
    9.下列说法不正确的是( )
    A.选举中,人们通常最关心的数据是众数
    B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大
    C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
    D.数据3,5,4,1,﹣2的中位数是4
    10.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果 C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有( )

    A.6个 B.7个 C.8个 D.9个
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在矩形ABCD中,AB=,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是_____.

    12.垫球是排球队常规训练的重要项目之一.如图所示的数据是运动员张华十次垫球测试的成绩.测试规则为每次连续接球10个,每垫球到位1个记1分.则运动员张华测试成绩的众数是_____.

    13.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是 .

    14.一艘货轮以18km/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B的距离是________km.

    15.若是关于的完全平方式,则__________.
    16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.

    三、解答题(共8题,共72分)
    17.(8分)如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A、B两点,点A在x轴上,点B在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A、B、C.
    (1)求该抛物线的解析式;
    (2)根据图象直接写出不等式ax2+(b﹣1)x+c>2的解集;
    (3)点P是抛物线上一动点,且在直线AB上方,过点P作AB的垂线段,垂足为Q点.当PQ=时,求P点坐标.

    18.(8分)如图,在Rt△ABC中,,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.求证:CE=AD;当D在AB中点时,四边形BECD是什么特殊四边形?说明理由;若D为AB中点,则当=______时,四边形BECD是正方形.

    19.(8分)已知是上一点,.如图①,过点作的切线,与的延长线交于点,求的大小及的长;
    如图②,为上一点,延长线与交于点,若,求的大小及的长.
    20.(8分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以 PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.
    (1)若AP=1,则AE= ;
    (2)①求证:点O一定在△APE的外接圆上;
    ②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;
    (3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.

    21.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).画出△ABC关于轴对称的△A1B1C1;以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.

    22.(10分)关于的一元二次方程.求证:方程总有两个实数根;若方程有一根小于1,求的取值范围.
    23.(12分)已知:如图,在四边形ABCD中,AD∥BC,点E为CD边上一点,AE与BE分别为∠DAB和∠CBA的平分线.
    (1)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);
    (2)在(1)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sin∠AGF=,求⊙O的半径.

    24.解方程.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    分析:本题考察幂的乘方,同底数幂的乘法,积的乘方和同底数幂的除法.
    解析: ,故A选项错误; a3·a = a4故B选项正确;(3ab)2 = 9a2b2故C选项错误; a6÷a3 = a3故D选项错误.
    故选B.
    2、A
    【解析】
    设黄球有x个,根据摸出一个球是蓝球的概率是,得出黄球的个数,再根据概率公式即可得出随机摸出一个黄球的概率.
    【详解】
    解:设袋子中黄球有x个,
    根据题意,得:,
    解得:x=3,
    即袋中黄球有3个,
    所以随机摸出一个黄球的概率为,
    故选A.
    【点睛】
    此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.
    3、D
    【解析】
    由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式组的解集为﹣1<x≤2,故选D
    4、C
    【解析】
    作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.
    【详解】
    解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,
    设D(x,),
    ∵四边形ABCD是正方形,
    ∴AD=CD=BC,∠ADC=∠DCB=90°,
    易得△AGD≌△DHC≌△CMB(AAS),
    ∴AG=DH=﹣x﹣1,
    ∴DG=BM,
    ∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,
    由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,
    解得x=﹣2,
    ∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,
    ∵AG=DH=﹣1﹣x=1,
    ∴点E的纵坐标为﹣4,
    当y=﹣4时,x=﹣,
    ∴E(﹣,﹣4),
    ∴EH=2﹣=,
    ∴CE=CH﹣HE=4﹣=,
    ∴S△CEB=CE•BM=××4=7;

    故选C.
    【点睛】
    考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题.
    5、B
    【解析】
    试题解析:如图所示:

    分两种情况进行讨论:
    当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过△ABC区域(包括边界),的取值范围是:
    当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过△ABC区域(包括边界),的取值范围是:
    故选B.
    点睛:二次函数 二次项系数决定了抛物线开口的方向和开口的大小,
    开口向上,开口向下.
    的绝对值越大,开口越小.
    6、B
    【解析】
    根据S△ABE=S矩形ABCD=1=•AE•BF,先求出AE,再求出BF即可.
    【详解】
    如图,连接BE.

    ∵四边形ABCD是矩形,
    ∴AB=CD=2,BC=AD=1,∠D=90°,
    在Rt△ADE中,AE===,
    ∵S△ABE=S矩形ABCD=1=•AE•BF,
    ∴BF=.
    故选:B.
    【点睛】
    本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.
    7、B
    【解析】
    试题解析:∵AB∥CD,且



    ∴在中,
    故选B.
    8、D
    【解析】
    分析:先根据圆内接四边形的性质得到 然后根据圆周角定理求
    详解:∵


    故选D.
    点睛:考查圆内接四边形的性质, 圆周角定理,掌握圆内接四边形的对角互补是解题的关键.
    9、D
    【解析】
    试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;
    B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;
    C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;
    D、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D选项的说法错误.
    故选D.
    考点:随机事件发生的可能性(概率)的计算方法
    10、A
    【解析】
    根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.
    【详解】
    如图:分情况讨论:

    ①AB为等腰直角△ABC底边时,符合条件的C点有2个;
    ②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.
    故选:C.
    【点睛】
    本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    ∵在矩形ABCD中,AB=,∠DAC=60°,
    ∴DC=,AD=1.
    由旋转的性质可知:D′C′=,AD′=1,
    ∴tan∠D′AC′==,
    ∴∠D′AC′=60°.
    ∴∠BAB′=30°,
    ∴S△AB′C′=×1×=,
    S扇形BAB′==.
    S阴影=S△AB′C′-S扇形BAB′=-.
    故答案为-.
    【点睛】
    错因分析  中档题.失分原因有2点:(1)不能准确地将阴影部分面积转化为易求特殊图形的面积;(2)不能根据矩形的边求出α的值.
    12、1
    【解析】
    根据众数定义:一组数据中出现次数最多的数据叫做众数可得答案.
    【详解】
    运动员张华测试成绩的众数是1.
    故答案为1.
    【点睛】
    本题主要考查了众数,关键是掌握众数定义.
    13、(﹣b,a)
    【解析】
    解:如图,从A、A1向x轴作垂线,设A1的坐标为(x,y),
    设∠AOX=α,∠A1OD=β,A1坐标(x,y)则α+β="90°sinα=cosβ" cosα="sinβ" sinα==cosβ=
    同理cos α==sinβ=
    所以x=﹣b,y=a,
    故A1坐标为(﹣b,a).

    【点评】重点理解三角函数的定义和求解方法,主要应用公式sinα=cosβ,cosα=sinβ.
    14、1
    【解析】
    作CE⊥AB于E,根据题意求出AC的长,根据正弦的定义求出CE,根据三角形的外角的性质求出∠B的度数,根据正弦的定义计算即可.
    【详解】
    作CE⊥AB于E,

    1km/h×30分钟=9km,
    ∴AC=9km,
    ∵∠CAB=45°,
    ∴CE=AC•sin45°=9km,
    ∵灯塔B在它的南偏东15°方向,
    ∴∠NCB=75°,∠CAB=45°,
    ∴∠B=30°,
    ∴BC===1km,
    故答案为:1.
    【点睛】
    本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键.
    15、1或-1
    【解析】
    【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.
    详解:∵x2+2(m-3)x+16是关于x的完全平方式,
    ∴2(m-3)=±8,
    解得:m=-1或1,
    故答案为-1或1.
    点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.
    16、1
    【解析】
    分析:类比于现在我们的十进制“满十进一”,可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数,即1×64+2×63+3×62+0×6+2=1.
    详解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,
    故答案为:1.
    点睛:本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.

    三、解答题(共8题,共72分)
    17、(1)y=﹣x2﹣x+2;(2)﹣2<x<0;(3)P点坐标为(﹣1,2).
    【解析】
    分析:(1)、根据题意得出点A和点B的坐标,然后利用待定系数法求出二次函数的解析式;(2)、根据函数图像得出不等式的解集;(3)、作PE⊥x轴于点E,交AB于点D,根据题意得出∠PDQ=∠ADE=45°,PD==1,然后设点P(x,﹣x2﹣x+2),则点D(x,x+2),根据PD的长度得出x的值,从而得出点P的坐标.
    详解:(1)当y=0时,x+2=0,解得x=﹣2,当x=0时,y=0+2=2,
    则点A(﹣2,0),B(0,2),
    把A(﹣2,0),C(1,0),B(0,2),分别代入y=ax2+bx+c得,解得.
    ∴该抛物线的解析式为y=﹣x2﹣x+2;
    (2)ax2+(b﹣1)x+c>2,ax2+bx+c>x+2,
    则不等式ax2+(b﹣1)x+c>2的解集为﹣2<x<0;
    (3)如图,作PE⊥x轴于点E,交AB于点D,
    在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°,∴∠PDQ=∠ADE=45°,
    在Rt△PDQ中,∠DPQ=∠PDQ=45°,PQ=DQ=,∴PD==1,
    设点P(x,﹣x2﹣x+2),则点D(x,x+2),∴PD=﹣x2﹣x+2﹣(x+2)=﹣x2﹣2x,
    即﹣x2﹣2x=1,解得x=﹣1,则﹣x2﹣x+2=2,∴P点坐标为(﹣1,2).

    点睛:本题主要考查的是二次函数的性质以及直角三角形的性质,属于基础题型.利用待定系数法求出函数解析式是解决这个问题的关键.
    18、(1)详见解析;(2)菱形;(3)当∠A=45°,四边形BECD是正方形.
    【解析】
    (1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;
    (2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;
    (3)求出∠CDB=90°,再根据正方形的判定推出即可.
    【详解】
    (1)∵DE⊥BC,
    ∴∠DFP=90°,
    ∵∠ACB=90°,
    ∴∠DFB=∠ACB,
    ∴DE//AC,
    ∵MN//AB,
    ∴四边形ADEC为平行四边形,
    ∴CE=AD;
    (2)菱形,理由如下:
    在直角三角形ABC中,
    ∵D为AB中点,
    ∴BD=AD,
    ∵CE=AD,
    ∴BD=CE,
    ∴MN//AB,
    ∴BECD是平行四边形,
    ∵∠ACB=90°,D是AB中点,
    ∴BD=CD,(斜边中线等于斜边一半)
    ∴四边形BECD是菱形;
    (3)若D为AB中点,则当∠A=45°时,四边形BECD是正方形,
    理由:∵∠A=45°,∠ACB=90°,
    ∴∠ABC=45°,
    ∵四边形BECD是菱形,
    ∴DC=DB,
    ∴∠DBC=∠DCB=45°,
    ∴∠CDB=90°,
    ∵四边形BECD是菱形,
    ∴四边形BECD是正方形,
    故答案为45°.
    【点睛】
    本题考查了平行四边形的判定与性质,菱形的判定、正方形的判定,直角三角形斜边中线的性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.
    19、(Ⅰ),PA=4;(Ⅱ),
    【解析】
    (Ⅰ)易得△OAC是等边三角形即∠AOC=60°,又由PC是○O的切线故PC⊥OC,即∠OCP=90°可得∠P的度数,由OC=4可得PA的长度
    (Ⅱ)由(Ⅰ)知△OAC是等边三角形,易得∠APC=45°;过点C作CD⊥AB于点D,易得AD=AO=CO,在Rt△DOC中易得CD的长,即可求解
    【详解】
    解:(Ⅰ)∵AB是○O的直径,∴OA是○O的半径.
    ∵∠OAC=60°,OA=OC,∴△OAC是等边三角形.
    ∴∠AOC=60°.
    ∵PC是○O的切线,OC为○O的半径,
    ∴PC⊥OC,即∠OCP=90°∴∠P=30°.
    ∴PO=2CO=8.
    ∴PA=PO-AO=PO-CO=4.
    (Ⅱ)由(Ⅰ)知△OAC是等边三角形,
    ∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.
    ∵AQ=CQ,∴∠ACQ=∠QAC=75°
    ∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°.
    ∴∠APC=∠AQC+∠QAO=45°.
    如图②,过点C作CD⊥AB于点D.
    ∵△OAC是等边三角形,CD⊥AB于点D,
    ∴∠DCO=30°,AD=AO=CO=2.
    ∵∠APC=45°,∴∠DCQ=∠APC=45°
    ∴PD=CD
    在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=2
    ∴PD=CD=2
    ∴AP=AD+DP=2+2

    【点睛】
    此题主要考查圆的综合应用
    20、(1);(2)①证明见解析;②;(3).
    【解析】
    试题分析:(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;
    (2)①A、P、O、E四点共圆,即可得出结论;
    ②连接OA、AC,由勾股定理求出AC=,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;
    (3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE的表达式,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可.
    试题解析:(1)∵四边形ABCD、四边形PEFG是正方形,
    ∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,
    ∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,
    ∴∠AEP=∠PBC,∴△APE∽△BCP,
    ∴,即,解得:AE=,
    故答案为:;
    (2)①∵PF⊥EG,∴∠EOF=90°,
    ∴∠EOF+∠A=180°,∴A、P、O、E四点共圆,
    ∴点O一定在△APE的外接圆上;
    ②连接OA、AC,如图1所示:
    ∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==,
    ∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,
    ∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,
    即点O经过的路径长为;
    (3)设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:
    则MN∥AE,∵ME=MP,∴AN=PN,∴MN=AE,
    设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,
    ∴,即,解得:AE= =,
    ∴x=2时,AE的最大值为1,此时MN的值最大=×1=,
    即△APE的圆心到AB边的距离的最大值为.

    【点睛】本题考查圆、二次函数的最值等,正确地添加辅助线,根据已知证明△APE∽△BCP是解题的关键.
    21、(1)详见解析;(2)详见解析.
    【解析】
    试题分析:(1)直接利用关于x轴对称点的性质得出对应点位置,进而得出答案;
    (2)直接利用位似图形的性质得出对应点位置,进而得出答案;
    试题解析:(1)如图所示:△A1B1C1,即为所求;
    (2)如图所示:△A2B2C2,即为所求;

    考点:作图-位似变换;作图-轴对称变换
    22、(2)见解析;(2)k<2.
    【解析】
    (2)根据方程的系数结合根的判别式,可得△=(k-2)2≥2,由此可证出方程总有两个实数根;
    (2)利用分解因式法解一元二次方程,可得出x=2、x=k+2,根据方程有一根小于2,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.
    【详解】
    (2)证明:∵在方程中,△=[-(k+3)]-4×2×(2k+2)=k-2k+2=(k-2)≥2,
    ∴方程总有两个实数根.
    (2) ∵x-(k+3)x+2k+2=(x-2)(x-k-2)=2,
    ∴x=2,x=k+2.
    ∵方程有一根小于2,
    ∴k+2<2,解得:k<2,
    ∴k的取值范围为k<2.
    【点睛】
    此题考查根的判别式,解题关键在于掌握运算公式.
    23、(1)作图见解析;(2)⊙O的半径为.
    【解析】
    (1)作出相应的图形,如图所示;
    (2)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.
    【详解】
    解:(1)作出相应的图形,如图所示(去掉线段BF即为所求).

    (2)∵AD∥BC,
    ∴∠DAB+∠CBA=180°.
    ∵AE与BE分别为∠DAB与∠CBA的平分线,
    ∴∠EAB+∠EBA=90°,
    ∴∠AEB=90°.
    ∵AB为⊙O的直径,点F在⊙O上,
    ∴∠AFB=90°,∴∠FAG+∠FGA=90°.
    ∵AE平分∠DAB,
    ∴∠FAG=∠EAB,∴∠AGF=∠ABE,
    ∴sin∠ABE=sin∠AGF==.
    ∵AE=4,∴AB=5,
    ∴⊙O的半径为.
    【点睛】
    此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.
    24、原分式方程无解.
    【解析】
    根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.
    【详解】
    方程两边乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3
    即:x2+2x﹣x2﹣x+2=3
    整理,得x=1
    检验:当x=1时,(x﹣1)(x+2)=0,
    ∴原方程无解.
    【点睛】
    本题考查解分式方程,解题的关键是明确解放式方程的计算方法.

    相关试卷

    湖北省襄阳市枣阳达标名校2022年中考押题数学预测卷含解析: 这是一份湖北省襄阳市枣阳达标名校2022年中考押题数学预测卷含解析,共19页。试卷主要包含了已知∠BAC=45,计算4+,解分式方程﹣3=时,去分母可得,下列各式中计算正确的是等内容,欢迎下载使用。

    2022年湖北省黄石市名校中考押题数学预测卷含解析: 这是一份2022年湖北省黄石市名校中考押题数学预测卷含解析,共22页。试卷主要包含了计算6m6÷等内容,欢迎下载使用。

    2022届湖北省咸宁市市级名校中考数学模拟试题含解析: 这是一份2022届湖北省咸宁市市级名校中考数学模拟试题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列各式中,计算正确的是,我市某一周的最高气温统计如下表等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map