2022年湖北省襄樊市名校中考数学模试卷含解析
展开
这是一份2022年湖北省襄樊市名校中考数学模试卷含解析,共21页。试卷主要包含了已知二次函数y=3等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图所示,在方格纸上建立的平面直角坐标系中,将△ABC绕点O按顺时针方向旋转90°,得到△A′B′O,则点A′的坐标为( )
A.(3 ,1) B.(3 ,2) C.(2 ,3) D.(1 ,3)
2.下列运算结果正确的是( )
A.3a2-a2 = 2 B.a2·a3= a6 C.(-a2)3 = -a6 D.a2÷a2 = a
3.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图①中有5个棋子,图②中有10个棋子,图③中有16个棋子,…,则图⑥________中有个棋子( )
A.31 B.35 C.40 D.50
4.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是( )
A. B. C. D.
5.如图,已知△ADE是△ABC绕点A逆时针旋转所得,其中点D在射线AC上,设旋转角为α,直线BC与直线DE交于点F,那么下列结论不正确的是( )
A.∠BAC=α B.∠DAE=α C.∠CFD=α D.∠FDC=α
6.根据中国铁路总公司3月13日披露,2018年铁路春运自2月1日起至3月12日止,为期40天全国铁路累计发送旅客3.82亿人次.3.82亿用科学记数法可以表示为( )
A.3.82×107 B.3.82×108 C.3.82×109 D.0.382×1010
7.如图是某几何体的三视图,下列判断正确的是( )
A.几何体是圆柱体,高为2 B.几何体是圆锥体,高为2
C.几何体是圆柱体,半径为2 D.几何体是圆锥体,直径为2
8.已知二次函数y=3(x﹣1)2+k的图象上有三点A(,y1),B(2,y2),C(﹣,y3),则y1、y2、y3的大小关系为( )
A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y1
9.如图,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是( )
A.3 B.4 C.5 D.6
10.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量.把130000000kg用科学记数法可表示为( )
A.13×kg B.0.13×kg C.1.3×kg D.1.3×kg
二、填空题(共7小题,每小题3分,满分21分)
11. “五一劳动节”,王老师将全班分成六个小组开展社会实践活动,活动结束后,随机抽取一个小组进行汇报展示.第五组被抽到的概率是___.
12.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为__________cm.
13.如图,在四边形ABCD中,AD∥BC,AB=CD且AB与CD不平行,AD=2,∠BCD=60°,对角线CA平分∠BCD,E,F分别是底边AD,BC的中点,连接EF,点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为__.
14.如图,AC、BD为圆O的两条垂直的直径,动点P从圆心O出发,沿线段线段DO的路线作匀速运动.设运动时间为t秒,∠APB的度数为y度,则下列图象中表示y与t的函数关系最恰当的是( )
A. B. C. D.
15.如图,正方形ABCD中,AB=3,以B为圆心,AB长为半径画圆B,点P在圆B上移动,连接AP,并将AP绕点A逆时针旋转90°至Q,连接BQ,在点P移动过程中,BQ长度的最小值为_____.
16.如图,二次函数y=ax2+bx+c(a≠0)的图象与轴相交于点A、B,若其对称轴为直线x=2,则OB–OA的值为_______.
17.如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过点A1(1,﹣)作x轴的垂线交11于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,…依次进行下去,则点A2018的横坐标为_____.
三、解答题(共7小题,满分69分)
18.(10分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.
(1)用树状图或列表法求出小王去的概率;
(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.
19.(5分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.
(1)参加音乐类活动的学生人数为 人,参加球类活动的人数的百分比为
(2)请把图2(条形统计图)补充完整;
(3)该校学生共600人,则参加棋类活动的人数约为 .
(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.
20.(8分)如图,在△ABC中,∠C=90°,BC=4,AC=1.点P是斜边AB上一点,过点P作PM⊥AB交边AC或BC于点M.又过点P作AC的平行线,与过点M的PM的垂线交于点N.设边AP=x,△PMN与△ABC重合部分图形的周长为y.
(1)AB= .
(2)当点N在边BC上时,x= .
(1)求y与x之间的函数关系式.
(4)在点N位于BC上方的条件下,直接写出过点N与△ABC一个顶点的直线平分△ABC面积时x的值.
21.(10分)已知二次函数 y=mx2﹣2mx+n 的图象经过(0,﹣3).
(1)n= _____________;
(2) 若二次函数 y=mx2﹣2mx+n 的图象与 x 轴有且只有一个交点,求 m 值;
(3) 若二次函数 y=mx2﹣2mx+n 的图象与平行于 x 轴的直线 y=5 的一个交点的横坐标为4,则另一个交点的坐标为 ;
(4) 如图,二次函数 y=mx2﹣2mx+n 的图象经过点 A(3,0),连接 AC,点 P 是抛物线位于线段 AC 下方图象上的任意一点,求△PAC 面积的最大值.
22.(10分)(1)计算:(1﹣)0﹣|﹣2|+;
(2)如图,在等边三角形ABC中,点D,E分别是边BC,AC的中点,过点E作EF⊥DE,交BC的延长线于点F,求∠F的度数.
23.(12分)已知抛物线y=ax2﹣bx.若此抛物线与直线y=x只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1).
①求此抛物线的解析式;
②以y轴上的点P(1,n)为中心,作该抛物线关于点P对称的抛物线y',若这两条抛物线有公共点,求n的取值范围;若a>1,将此抛物线向上平移c个单位(c>1),当x=c时,y=1;当1<x<c时,y>1.试比较ac与1的大小,并说明理由.
24.(14分)如果a2+2a-1=0,求代数式的值.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
解决本题抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.
【详解】
由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).
故选D.
2、C
【解析】
选项A, 3a2-a2 = 2 a2;选项B, a2·a3= a5;选项C, (-a2)3 = -a6;选项D,a2÷a2 = 1.正确的只有选项C,故选C.
3、C
【解析】
根据题意得出第n个图形中棋子数为1+2+3+…+n+1+2n,据此可得.
【详解】
解:∵图1中棋子有5=1+2+1×2个,
图2中棋子有10=1+2+3+2×2个,
图3中棋子有16=1+2+3+4+3×2个,
…
∴图6中棋子有1+2+3+4+5+6+7+6×2=40个,
故选C.
【点睛】
本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.
4、C
【解析】
分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.
详解:∵OB=1,AB⊥OB,点A在函数 (x0)的图象上,
∴k=4,
∴反比例函数的解析式为,O1(3,0),
∵C1O1⊥x轴,
∴当x=3时,
∴P
故选C.
点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.
5、D
【解析】
利用旋转不变性即可解决问题.
【详解】
∵△DAE是由△BAC旋转得到,
∴∠BAC=∠DAE=α,∠B=∠D,
∵∠ACB=∠DCF,
∴∠CFD=∠BAC=α,
故A,B,C正确,
故选D.
【点睛】
本题考查旋转的性质,解题的关键是熟练掌握旋转不变性解决问题,属于中考常考题型.
6、B
【解析】
根据题目中的数据可以用科学记数法表示出来,本题得以解决.
【详解】
解:3.82亿=3.82×108,
故选B.
【点睛】
本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法.
7、A
【解析】
试题解析:根据主视图和左视图为矩形是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱,
再根据左视图的高度得出圆柱体的高为2;
故选A.
考点:由三视图判断几何体.
8、D
【解析】
试题分析:根据二次函数的解析式y=3(x-1)2+k,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y3>y2>y1.
故选D
点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证.
9、C
【解析】
根据等腰三角形的性质可得BE=BC=2,再根据三角形中位线定理可求得BD、DE长,根据三角形周长公式即可求得答案.
【详解】
解:∵在△ABC中,AB=AC=3,AE平分∠BAC,
∴BE=CE=BC=2,
又∵D是AB中点,
∴BD=AB=,
∴DE是△ABC的中位线,
∴DE=AC=,
∴△BDE的周长为BD+DE+BE=++2=5,
故选C.
【点睛】
本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键.
10、D
【解析】
试题分析:科学计数法是指:a×,且,n为原数的整数位数减一.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
根据概率是所求情况数与总情况数之比,可得答案.
【详解】
因为共有六个小组,
所以第五组被抽到的概率是,
故答案为:.
【点睛】
本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.
12、(15﹣5)
【解析】
先利用黄金分割的定义计算出AP,然后计算AB-AP即得到PB的长.
【详解】
∵P为AB的黄金分割点(AP>PB),
∴AP=AB=×10=5﹣5,
∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.
故答案为(15﹣5).
【点睛】
本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB.
13、2
【解析】
将PA+PB转化为PA+PC的值即可求出最小值.
【详解】
解:
E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,
B点关于EF的对称点C点,
AC即为PA+PB的最小值,
∠BCD=, 对角线AC平分∠BCD,
∠ABC=, ZBCA=,
∠BAC=,
AD=2,
PA+PB的最小值=.
故答案为: .
【点睛】
求PA+PB的最小值, PA+PB不能直接求, 可考虑转化PA+PC的值,从而找出其最小值求解.
14、C.
【解析】
分析:根据动点P在OC上运动时,∠APB逐渐减小,当P在上运动时,∠APB不变,当P在DO上运动时,∠APB逐渐增大,即可得出答案.
解答:解:当动点P在OC上运动时,∠APB逐渐减小;
当P在上运动时,∠APB不变;
当P在DO上运动时,∠APB逐渐增大.
故选C.
15、3﹣1
【解析】
通过画图发现,点Q的运动路线为以D为圆心,以1为半径的圆,可知:当Q在对角线BD上时,BQ最小,先证明△PAB≌△QAD,则QD=PB=1,再利用勾股定理求对角线BD的长,则得出BQ的长.
【详解】
如图,当Q在对角线BD上时,BQ最小.
连接BP,由旋转得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.
∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=,∴BQ=BD﹣QD=3﹣1,即BQ长度的最小值为(3﹣1).
故答案为3﹣1.
【点睛】
本题是圆的综合题.考查了正方形的性质、旋转的性质和最小值问题,寻找点Q的运动轨迹是本题的关键,通过证明两三角形全等求出BQ长度的最小值最小值.
16、4
【解析】
试题分析:设OB的长度为x,则根据二次函数的对称性可得:点B的坐标为(x+2,0),点A的坐标为(2-x,0),则OB-OA=x+2-(x-2)=4.
点睛:本题主要考查的就是二次函数的性质.如果二次函数与x轴的两个交点坐标为(,0)和(,0),则函数的对称轴为直线:x=.在解决二次函数的题目时,我们一定要注意区分点的坐标和线段的长度之间的区别,如果点在x的正半轴,则点的横坐标就是线段的长度,如果点在x的负半轴,则点的横坐标的相反数就是线段的长度.
17、1
【解析】
根据题意可以发现题目中各点的坐标变化规律,从而可以解答本题.
【详解】
解:由题意可得,
A1(1,-),A2(1,1),A3(-2,1),A4(-2,-2),A5(4,-2),…,
∵2018÷4=504…2,2018÷2=1009,
∴点A2018的横坐标为:1,
故答案为1.
【点睛】
本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,找出题目中点的横坐标的变化规律.
三、解答题(共7小题,满分69分)
18、(1);(2)规则是公平的;
【解析】
试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;
(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.
试题解析:(1)画树状图为:
共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,
所以P(小王)=;
(2)不公平,理由如下:
∵P(小王)=,P(小李)=,≠,
∴规则不公平.
点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
19、(1)7、30%;(2)补图见解析;(3)105人;(3)
【解析】
试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;
(2)根据(1)中所求数据即可补全条形图;
(3)总人数乘以棋类活动的百分比可得;
(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.
试题解析:解:(1)本次调查的总人数为10÷25%=40(人),∴参加音乐类活动的学生人数为40×17.5%=7人,参加球类活动的人数的百分比为×100%=30%,故答案为7,30%;
(2)补全条形图如下:
(3)该校学生共600人,则参加棋类活动的人数约为600×=105,故答案为105;
(4)画树状图如下:
共有12种情况,选中一男一女的有6种,则P(选中一男一女)==.
点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
20、(1)2;(2);(1)详见解析;(4)满足条件的x的值为.
【解析】
(1)根据勾股定理可以直接求出(2)先证明四边形PAMN是平行四边形,再根据三角函数值求解(1)分情况根据t的大小求出不同的函数关系式(4)不同条件下:当点G是AC中点时和当点D是AB中点时,根据相似三角形的性质求解.
【详解】
解:(1)在中,,
故答案为2.
(2)如图1中,
∴四边形PAMN是平行四边形,
当点在上时,,
.
(1)①当时,如图1,
.
②当时,如图2,
y
③当时,如图1,
(4)如图4中,当点是中点时,满足条件
.
如图2中,当点是中点时,满足条件.
.
综上所述,满足条件的x的值为或.
【点睛】
此题重点考查学生对一次函数的应用,勾股定理,平行四边形的判定,相似三角形的性质和三角函数值的综合应用能力,熟练掌握勾股定理和三角函数值的解法是解题的关键.
21、(2)-2;(2)m=﹣2;(2)(﹣2,5);(4)当a=时,△PAC的面积取最大值,最大值为
【解析】
(2)将(0,-2)代入二次函数解析式中即可求出n值;
(2)由二次函数图象与x轴只有一个交点,利用根的判别式△=0,即可得出关于m的一元二次方程,解之取其非零值即可得出结论;
(2)根据二次函数的解析式利用二次函数的性质可找出二次函数图象的对称轴,利用二次函数图象的对称性即可找出另一个交点的坐标;
(4)将点A的坐标代入二次函数解析式中可求出m值,由此可得出二次函数解析式,由点A、C的坐标,利用待定系数法可求出直线AC的解析式,过点P作PD⊥x轴于点D,交AC于点Q,设点P的坐标为(a,a2-2a-2),则点Q的坐标为(a,a-2),点D的坐标为(a,0),根据三角形的面积公式可找出S△ACP关于a的函数关系式,配方后即可得出△PAC面积的最大值.
【详解】
解:(2)∵二次函数y=mx2﹣2mx+n的图象经过(0,﹣2),
∴n=﹣2.
故答案为﹣2.
(2)∵二次函数y=mx2﹣2mx﹣2的图象与x轴有且只有一个交点,
∴△=(﹣2m)2﹣4×(﹣2)m=4m2+22m=0,
解得:m2=0,m2=﹣2.
∵m≠0,
∴m=﹣2.
(2)∵二次函数解析式为y=mx2﹣2mx﹣2,
∴二次函数图象的对称轴为直线x=﹣=2.
∵该二次函数图象与平行于x轴的直线y=5的一个交点的横坐标为4,
∴另一交点的横坐标为2×2﹣4=﹣2,
∴另一个交点的坐标为(﹣2,5).
故答案为(﹣2,5).
(4)∵二次函数y=mx2﹣2mx﹣2的图象经过点A(2,0),
∴0=9m﹣6m﹣2,
∴m=2,
∴二次函数解析式为y=x2﹣2x﹣2.
设直线AC的解析式为y=kx+b(k≠0),
将A(2,0)、C(0,﹣2)代入y=kx+b,得:
,解得:,
∴直线AC的解析式为y=x﹣2.
过点P作PD⊥x轴于点D,交AC于点Q,如图所示.
设点P的坐标为(a,a2﹣2a﹣2),则点Q的坐标为(a,a﹣2),点D的坐标为(a,0),
∴PQ=a﹣2﹣(a2﹣2a﹣2)=2a﹣a2,
∴S△ACP=S△APQ+S△CPQ=PQ•OD+PQ•AD=﹣a2+a=﹣(a﹣)2+,
∴当a=时,△PAC的面积取最大值,最大值为 .
【点睛】
本题考查了待定系数法求一次(二次)函数解析式、抛物线与x轴的交点、二次函数的性质以及二次函数的最值,解题的关键是:(2)代入点的坐标求出n值;(2)牢记当△=b2-4ac=0时抛物线与x轴只有一个交点;(2)利用二次函数的对称轴求出另一交点的坐标;(4)利用三角形的面积公式找出S△ACP关于a的函数关系式.
22、(1)﹣1+3;(2)30°.
【解析】
(1) 根据零指数幂、 绝对值、 二次根式的性质求出每一部分的值, 代入求出即可;
(2)根据平行线的性质可得∠EDC=∠B=,根据三角形内角和定理即可求解;
【详解】
解:(1)原式=1﹣2+3=﹣1+3;
(2)∵△ABC是等边三角形,
∴∠B=60°,
∵点D,E分别是边BC,AC的中点,
∴DE∥AB,
∴∠EDC=∠B=60°,
∵EF⊥DE,
∴∠DEF=90°,
∴∠F=90°﹣∠EDC=30°.
【点睛】
(1) 主要考查零指数幂、 绝对值、 二次根式的性质;
(2)考查平行线的性质和三角形内角和定理.
23、(1)①;②n≤1;(2)ac≤1,见解析.
【解析】
(1)①△=1求解b=1,将点(3,1)代入平移后解析式,即可;
②顶点为(1,)关于P(1,n)对称点的坐标是(﹣1,2n﹣),关于点P中心对称的新抛物线y'=(x+1)2+2n﹣=x2+x+2n,联立方程组即可求n的范围;
(2)将点(c,1)代入y=ax2﹣bx+c得到ac﹣b+1=1,b=ac+1,当1<x<c时,y>1. ≥c,b≥2ac,ac+1≥2ac,ac≥1;
【详解】
解:(1)①ax2﹣bx=x,ax2﹣(b+1)x=1,
△=(b+1)2=1,b=﹣1,
平移后的抛物线y=a(x﹣1)2﹣b(x﹣1)过点(3,1),
∴4a﹣2b=1,
∴a=﹣,b=﹣1,
原抛物线:y=﹣x2+x,
②其顶点为(1,)关于P(1,n)对称点的坐标是(﹣1,2n﹣),
∴关于点P中心对称的新抛物线y'=(x+1)2+2n﹣=x2+x+2n.
由得:x2+2n=1有解,所以n≤1.
(2)由题知:a>1,将此抛物线y=ax2﹣bx向上平移c个单位(c>1),
其解析式为:y=ax2﹣bx+c过点(c,1),
∴ac2﹣bc+c=1 (c>1),
∴ac﹣b+1=1,b=ac+1,
且当x=1时,y=c,
对称轴:x=,抛物线开口向上,画草图如右所示.
由题知,当1<x<c时,y>1.
∴≥c,b≥2ac,
∴ac+1≥2ac,ac≤1;
【点睛】
本题考查二次函数的图象及性质;掌握二次函数图象平移时改变位置,而a的值不变是解题的关键.
24、1
【解析】
==1.
故答案为1.
相关试卷
这是一份湖北省襄樊市重点达标名校2022年中考冲刺卷数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,点A,一、单选题等内容,欢迎下载使用。
这是一份湖北省襄樊市名校2022年中考一模数学试题含解析,共20页。
这是一份湖北省襄樊市名校2021-2022学年中考冲刺卷数学试题含解析,共21页。试卷主要包含了如图,将函数y=,小手盖住的点的坐标可能为等内容,欢迎下载使用。