|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年湖南省长沙市雨花区雅礼中学中考一模数学试题含解析
    立即下载
    加入资料篮
    2022年湖南省长沙市雨花区雅礼中学中考一模数学试题含解析01
    2022年湖南省长沙市雨花区雅礼中学中考一模数学试题含解析02
    2022年湖南省长沙市雨花区雅礼中学中考一模数学试题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖南省长沙市雨花区雅礼中学中考一模数学试题含解析

    展开
    这是一份2022年湖南省长沙市雨花区雅礼中学中考一模数学试题含解析,共20页。试卷主要包含了分式方程=1的解为,下列各式等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.二次函数(a≠0)的图象如图所示,则下列命题中正确的是(  )

    A.a >b>c
    B.一次函数y=ax +c的图象不经第四象限
    C.m(am+b)+b<a(m是任意实数)
    D.3b+2c>0
    2.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的个数有(  )

    A.1 B.2 C.3 D.4
    3.下列说法不正确的是( )
    A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖
    B.了解一批电视机的使用寿命适合用抽样调查
    C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定
    D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件
    4.如图,矩形ABCD中,AB=3,AD=4,连接BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当线段BE′和线段BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为(  )

    A. B. C. D.
    5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是(  )
    A.6  B.7 C.11 D.12
    6.分式方程=1的解为(  )
    A.x=1 B.x=0 C.x=﹣ D.x=﹣1
    7.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为( )
    A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144
    8.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是( )

    A. B. C. D.
    9.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )

    A. B.4 C. D.
    10.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是 ( )
    A.①②③ B.①③⑤ C.②③④ D.②④⑤
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是 .
    12.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数图象上的概率是 .
    13.如图,点M、N分别在∠AOB的边OA、OB上,将∠AOB沿直线MN翻折,设点O落在点P处,如果当OM=4,ON=3时,点O、P的距离为4,那么折痕MN的长为______.

    14.分解因式:x2﹣4=_____.
    15.如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为_____.

    16.用半径为6cm,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为_______cm.
    三、解答题(共8题,共72分)
    17.(8分)如图,内接于,,的延长线交于点.

    (1)求证:平分;
    (2)若,,求和的长.
    18.(8分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:

    “祖冲之奖”的学生成绩统计表:
    分数/分
    80
    85
    90
    95
    人数/人
    4
    2
    10
    4
    根据图表中的信息,解答下列问题:
    (1)这次获得“刘徽奖”的人数是_____,并将条形统计图补充完整;
    (2)获得“祖冲之奖”的学生成绩的中位数是_____分,众数是_____分;
    (3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“﹣2”,“﹣1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y).用列表法或树状图法求这个点在第二象限的概率.
    19.(8分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示.

    (1)求甲组加工零件的数量y与时间之间的函数关系式.
    (2)求乙组加工零件总量的值.
    (3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?
    20.(8分)解不等式组:并求它的整数解的和.
    21.(8分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?

    22.(10分)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.
    (1)求两次传球后,球恰在B手中的概率;
    (2)求三次传球后,球恰在A手中的概率.
    23.(12分)2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化.某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图.请你根据图中提供的信息完成下列问题:
    (1)求被调查学生的人数,并将条形统计图补充完整;
    (2)求扇形统计图中的A等对应的扇形圆心角的度数;
    (3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?

    24.观察下列算式:
    ① 1 × 3 - 22 =" 3" - 4 = -1
    ② 2 × 4 - 32 =" 8" - 9 = -1
    ③3 × 5 - 42 =" 15" - 16 = -1

    ……
    (1)请你按以上规律写出第4个算式;
    (2)把这个规律用含字母的式子表示出来;
    (3)你认为(2)中所写出的式子一定成立吗?并说明理由.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    解:A.由二次函数的图象开口向上可得a>0,由抛物线与y轴交于x轴下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,则b>a>c,故此选项错误;
    B.∵a>0,c<0,∴一次函数y=ax+c的图象经一、三、四象限,故此选项错误;
    C.当x=﹣1时,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此选项错误;
    D.由图象可知x=1,a+b+c>0①,∵对称轴x=﹣1,当x=1,y>0,∴当x=﹣3时,y>0,即9a﹣3b+c>0②
    ①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故选项正确;
    故选D.
    点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值.
    2、C
    【解析】
    ①图中有3个等腰直角三角形,故结论错误;
    ②根据ASA证明即可,结论正确;
    ③利用面积法证明即可,结论正确;
    ④利用三角形的中线的性质即可证明,结论正确.
    【详解】
    ∵CE⊥AB,∠ACE=45°,
    ∴△ACE是等腰直角三角形,
    ∵AF=CF,
    ∴EF=AF=CF,
    ∴△AEF,△EFC都是等腰直角三角形,
    ∴图中共有3个等腰直角三角形,故①错误,
    ∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,
    ∴∠EAH=∠BCE,
    ∵AE=EC,∠AEH=∠CEB=90°,
    ∴△AHE≌△CBE,故②正确,
    ∵S△ABC=BC•AD=AB•CE,AB=AC=AE,AE=CE,
    ∴BC•AD=CE2,故③正确,
    ∵AB=AC,AD⊥BC,
    ∴BD=DC,
    ∴S△ABC=2S△ADC,
    ∵AF=FC,
    ∴S△ADC=2S△ADF,
    ∴S△ABC=4S△ADF.
    故选C.
    【点睛】
    本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.
    3、A
    【解析】
    试题分析:根据抽样调查适用的条件、方差的定义及意义和可能性的大小找到正确答案即可.
    试题解析:A、某种彩票中奖的概率是,只是一种可能性,买1000张该种彩票不一定会中奖,故错误;
    B、调查电视机的使用寿命要毁坏电视机,有破坏性,适合用抽样调查,故正确;
    C、标准差反映了一组数据的波动情况,标准差越小,数据越稳定,故正确;
    D、袋中没有黑球,摸出黑球是不可能事件,故正确.
    故选A.
    考点:1.概率公式;2.全面调查与抽样调查;3.标准差;4.随机事件.
    4、A
    【解析】
    先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=,则AF=4-=.再过G作GH∥BF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,由GH∥FB,得出=,即可求解.
    【详解】
    解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,
    ∴BD=5,

    在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,
    ∴BF2=32+(4-BF)2,
    解得BF=,
    ∴AF=4-=.
    过G作GH∥BF,交BD于H,
    ∴∠FBD=∠GHD,∠BGH=∠FBG,
    ∵FB=FD,
    ∴∠FBD=∠FDB,
    ∴∠FDB=∠GHD,
    ∴GH=GD,
    ∵∠FBG=∠EBC=∠DBC=∠ADB=∠FBD,
    又∵∠FBG=∠BGH,∠FBG=∠GBH,
    ∴BH=GH,
    设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,
    ∵GH∥FB,
    ∴ =,即=,
    解得x=.
    故选A.
    【点睛】
    本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键.
    5、C
    【解析】
    根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.
    【详解】
    ∵x+2y=5,
    ∴2x+4y=10,
    则2x+4y+1=10+1=1.
    故选C.
    【点睛】
    此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.
    6、C
    【解析】
    首先找出分式的最简公分母,进而去分母,再解分式方程即可.
    【详解】
    解:去分母得:
    x2-x-1=(x+1)2,
    整理得:-3x-2=0,
    解得:x=-,
    检验:当x=-时,(x+1)2≠0,
    故x=-是原方程的根.
    故选C.
    【点睛】
    此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.
    7、D
    【解析】
    试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.
    解:2012年的产量为100(1+x),
    2013年的产量为100(1+x)(1+x)=100(1+x)2,
    即所列的方程为100(1+x)2=144,
    故选D.
    点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.
    8、C
    【解析】
    易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得= ,=,从而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.
    【详解】
    ∵AB、CD、EF都与BD垂直,
    ∴AB∥CD∥EF,
    ∴△DEF∽△DAB,△BEF∽△BCD,
    ∴= ,=,
    ∴+=+==1.
    ∵AB=1,CD=3,
    ∴+=1,
    ∴EF=.
    故选C.
    【点睛】
    本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.
    9、B
    【解析】
    求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.
    【详解】
    解:∵AD⊥BC,BE⊥AC,
    ∴∠ADB=∠AEB=∠ADC=90°,
    ∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,
    ∵∠AFE=∠BFD,
    ∴∠EAF=∠FBD,
    ∵∠ADB=90°,∠ABC=45°,
    ∴∠BAD=45°=∠ABC,
    ∴AD=BD,
    在△ADC和△BDF中 ,
    ∴△ADC≌△BDF,
    ∴DF=CD=4,
    故选:B.
    【点睛】
    此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.
    10、D
    【解析】
    根据实数的运算法则即可一一判断求解.
    【详解】
    ①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= ,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.
    故选D.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、y3>y1>y2.
    【解析】
    试题分析:将A,B,C三点坐标分别代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2.
    考点:二次函数的函数值比较大小.
    12、.
    【解析】
    试题分析:画树状图得:

    ∵共有12种等可能的结果,点(m,n)恰好在反比例函数图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m,n)在函数图象上的概率是:=.故答案为.
    考点:反比例函数图象上点的坐标特征;列表法与树状图法.
    13、
    【解析】
    由折叠的性质可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的长,即可求MN的长.
    【详解】
    设MN与OP交于点E,

    ∵点O、P的距离为4,
    ∴OP=4
    ∵折叠
    ∴MN⊥OP,EO=EP=2,
    在Rt△OME中,ME=
    在Rt△ONE中,NE=
    ∴MN=ME-NE=2-
    故答案为2-
    【点睛】
    本题考查了翻折变换,勾股定理,利用勾股定理求线段的长度是本题的关键.
    14、(x+2)(x﹣2)
    【解析】【分析】直接利用平方差公式进行因式分解即可.
    【详解】x2﹣4
    =x2-22
    =(x+2)(x﹣2),
    故答案为:(x+2)(x﹣2).
    【点睛】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.
    15、.
    【解析】
    由点A(1,1),可得OA的长,点A在第一象限的角平分线上,可得∠AOB=45°,,再根据弧长公式计算即可.
    【详解】
    ∵A(1,1),
    ∴OA=,点A在第一象限的角平分线上,
    ∵以点O为旋转中心,将点A逆时针旋转到点B的位置,
    ∴∠AOB=45°,
    ∴的长为=,
    故答案为:.
    【点睛】
    本题考查坐标与图形变化——旋转,弧长公式,熟练掌握旋转的性质以及弧长公式是解题的关键.本题中求出OA=以及∠AOB=45°也是解题的关键.
    16、1.
    【解析】
    解:设圆锥的底面圆半径为r,
    根据题意得1πr=,
    解得r=1,
    即圆锥的底面圆半径为1cm.
    故答案为:1.
    【点睛】
    本题考查圆锥的计算,掌握公式正确计算是解题关键.

    三、解答题(共8题,共72分)
    17、 (1)证明见解析;(2)AC= , CD= ,
    【解析】
    分析:(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,证出BE∥OA,得出,求出OD=,得出CD=,而BE∥OA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.
    本题解析:
    解:(1)证明:延长AO交BC于H,连接BO.
    ∵AB=AC,OB=OC,
    ∴A,O在线段BC的垂直平分线上.∴AO⊥BC.
    又∵AB=AC,∴AO平分∠BAC.

    (2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径.
    ∴∠EBC=90°,BC⊥BE.
    ∵∠E=∠BAC,∴sinE=sin∠BAC.
    ∴=.∴CE=BC=10.
    ∴BE==8,OA=OE=CE=5.
    ∵AH⊥BC,∴BE∥OA.
    ∴=,即=,
    解得OD=.∴CD=5+=.
    ∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线.
    ∴OH=BE=4,CH=BC=3.∴AH=5+4=9.
    在Rt△ACH中,AC===3.

    点睛:本题考查了等腰三角形的判定与性质、三角函数及圆的有关计算,(1)中由三线合一定理求解是解题的关键,(2)中由圆周角定理得出∠EBC=90°,∠E=∠BAC,再利用三角函数及三角形中位线定理求出AC即可,本题综合性强,有一定难度.
    18、(1)刘徽奖的人数为人,补全统计图见解析;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分;(3)(点在第二象限).
    【解析】
    (1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;
    (2)根据中位数和众数的定义求解可得;
    (3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得.
    【详解】
    (1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%=48人,杨辉奖的人数为200×46%=92人,则刘徽奖的人数为200﹣(20+48+92)=40,补全统计图如下:

    故答案为40;
    (2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分.
    故答案为90、90;
    (3)列表法:

    ∵第二象限的点有(﹣2,2)和(﹣1,2),∴P(点在第二象限).
    【点睛】
    本题考查了用列表法或画树状图法求概率、频数分布直方图以及利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.
    19、 (1)见解析(2)300(3)2小时
    【解析】
    解:(1)设甲组加工的零件数量y与时间x的函数关系式为.
    根据题意,得,解得.
    所以,甲组加工的零件数量y与时间x的函数关系式为:.
    (2)当时,.
    因为更换设备后,乙组工作效率是原来的2倍,
    所以,.解得.
    (3)乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为

    当0≤x≤2时,.解得.舍去.
    当2 当2.8 所以,经过3小时恰好装满第1箱.
    当3 当4.8 因为5-3=2,
    所以,再经过2小时恰好装满第2箱.
    20、0
    【解析】
    分析:先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可求出不等式组的解集.
    详解: ,
    由①去括号得:﹣3x﹣3﹣x+3<8,
    解得:x>﹣2,
    由②去分母得:4x+2﹣3+3x≤6,
    解得:x≤1,
    则不等式组的解集为﹣2<x≤1.
    点睛:本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.
    21、(1)a=0.3,b=4;(2)99人;(3)
    【解析】
    分析:(1)由统计图易得a与b的值,继而将统计图补充完整;
    (2)利用用样本估计总体的知识求解即可求得答案;
    (3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.
    详解:(1)a=1-0.15-0.35-0.20=0.3;
    ∵总人数为:3÷0.15=20(人),
    ∴b=20×0.20=4(人);
    故答案为:0.3,4;
    补全统计图得:

    (2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);
    (3)画树状图得:

    ∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,
    ∴所选两人正好都是甲班学生的概率是:.
    点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.
    22、(1);(2) .
    【解析】
    试题分析:(1)直接列举出两次传球的所有结果,球球恰在B手中的结果只有一种即可求概率;(2)画出树状图,表示出三次传球的所有结果,三次传球后,球恰在A手中的结果有2种,即可求出三次传球后,球恰在A手中的概率.
    试题解析:
    解:(1)两次传球的所有结果有4种,分别是A→B→C,A→B→A,A→C→B,A→C→A.每种结果发生的可能性相等,球球恰在B手中的结果只有一种,所以两次传球后,球恰在B手中的概率是;
    (2)树状图如下,

    由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等.其中,三次传球后,球恰在A手中的结果有A→B→C→A,A→C→B→A这两种,所以三次传球后,球恰在A手中的概率是.
    考点:用列举法求概率.
    23、(1)图见解析;(2)126°;(3)1.
    【解析】
    (1)利用被调查学生的人数=了解程度达到B等的学生数÷所占比例,即可得出被调查学生的人数,由了解程度达到C等占到的比例可求出了解程度达到C等的学生数,再利用了解程度达到A等的学生数=被调查学生的人数-了解程度达到B等的学生数-了解程度达到C等的学生数-了解程度达到D等的学生数可求出了解程度达到A等的学生数,依此数据即可将条形统计图补充完整;
    (2)根据A等对应的扇形圆心角的度数=了解程度达到A等的学生数÷被调查学生的人数×360°,即可求出结论;
    (3)利用该校现有学生数×了解程度达到A等的学生所占比例,即可得出结论.
    【详解】
    (1)48÷40%=120(人),
    120×15%=18(人),
    120-48-18-12=42(人).
    将条形统计图补充完整,如图所示.

    (2)42÷120×100%×360°=126°.
    答:扇形统计图中的A等对应的扇形圆心角为126°.
    (3)1500×=1(人).
    答:该校学生对政策内容了解程度达到A等的学生有1人.
    【点睛】
    本题考查了条形统计图、扇形统计图以及用样本估计总体,观察条形统计图及扇形统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.
    24、⑴;
    ⑵答案不唯一.如;


    .
    【解析】
    (1)根据①②③的算式中,变与不变的部分,找出规律,写出新的算式;
    (2)将(1)中,发现的规律,由特殊到一般,得出结论;
    (3)一定成立.利用整式的混合运算方法加以证明.

    相关试卷

    2023年湖南省长沙市雨花区雅礼实验中学中考数学二模试卷(含解析): 这是一份2023年湖南省长沙市雨花区雅礼实验中学中考数学二模试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年湖南省长沙市雨花区南雅中学中考数学二模试卷: 这是一份2023年湖南省长沙市雨花区南雅中学中考数学二模试卷,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年湖南省长沙市雨花区南雅中学中考数学二模试卷(含解析): 这是一份2023年湖南省长沙市雨花区南雅中学中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map