2022年吉林省长春市二道区达标名校中考数学最后一模试卷含解析
展开这是一份2022年吉林省长春市二道区达标名校中考数学最后一模试卷含解析,共18页。试卷主要包含了计算2a2+3a2的结果是,如图,将函数y=,下列计算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,那么r的取值范围是( )
A.r<5 B.r>5 C.r<10 D.5<r<10
2.若实数m满足,则下列对m值的估计正确的是( )
A.﹣2<m<﹣1 B.﹣1<m<0 C.0<m<1 D.1<m<2
3.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是( )
A.∠ABD=∠C B.∠ADB=∠ABC C. D.
4.计算2a2+3a2的结果是( )
A.5a4 B.6a2 C.6a4 D.5a2
5.为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表:
步数(万步)
1.0
1.2
1.1
1.4
1.3
天数
3
3
5
7
12
在每天所走的步数这组数据中,众数和中位数分别是( )
A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.4
6.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )
A.y=(x﹣2)2-2 B.y=(x﹣2)2+7
C.y=(x﹣2)2-5 D.y=(x﹣2)2+4
7.为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位.已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为( )
A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣12
8.一元二次方程2x2﹣3x+1=0的根的情况是( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.只有一个实数根 D.没有实数根
9.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为( )
A.6 B.12 C.18 D.24
10.下列计算正确的是( )
A.x2+x2=x4 B.x8÷x2=x4 C.x2•x3=x6 D.(-x)2-x2=0
二、填空题(共7小题,每小题3分,满分21分)
11.完全相同的3个小球上面分别标有数-2、-1、1,将其放入一个不透明的盒子中后摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀),两次摸到的球上数之和是负数的概率是________.
12.已知一元二次方程x2-4x-3=0的两根为m,n,则-mn+= .
13.北京奥运会国家体育场“鸟巢”的建筑面积为258000平方米,那么258000用科学记数法可表示为 .
14.如图所示,矩形ABCD的顶点D在反比例函数(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,△BCE的面积是6,则k=_____.
15.让我们轻松一下,做一个数字游戏:
第一步:取一个自然数,计算得;
第二步:算出的各位数字之和得,计算得;
第三步:算出的各位数字之和得,再计算得;
依此类推,则____________
16.如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2= .
17.点(-1,a)、(-2,b)是抛物线上的两个点,那么a和b的大小关系是a_______b(填“>”或“<”或“=”).
三、解答题(共7小题,满分69分)
18.(10分)已知二次函数y=a(x+m)2的顶点坐标为(﹣1,0),且过点A(﹣2,﹣).
(1)求这个二次函数的解析式;
(2)点B(2,﹣2)在这个函数图象上吗?
(3)你能通过左,右平移函数图象,使它过点B吗?若能,请写出平移方案.
19.(5分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.
20.(8分)计算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣|
21.(10分)已知:a+b=4
(1)求代数式(a+1)(b+1)﹣ab值;
(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.
22.(10分)如图,在边长为1 个单位长度的小正方形网格中:
(1)画出△ABC 向上平移6 个单位长度,再向右平移5 个单位长度后的△A1B1C1.
(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.
(3)求△CC1C2的面积.
23.(12分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ;
(3)△A2B2C2的面积是 平方单位.
24.(14分)如图1,在菱形ABCD中,AB=,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.
(1)求证:BE=DF;
(2)当t= 秒时,DF的长度有最小值,最小值等于 ;
(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
延长CD交⊙D于点E,
∵∠ACB=90°,AC=12,BC=9,∴AB==15,
∵D是AB中点,∴CD=,
∵G是△ABC的重心,∴CG==5,DG=2.5,
∴CE=CD+DE=CD+DF=10,
∵⊙C与⊙D相交,⊙C的半径为r,
∴ ,
故选D.
【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG的长是解题的关键.
2、A
【解析】
试题解析:∵,
∴m2+2+=0,
∴m2+2=-,
∴方程的解可以看作是函数y=m2+2与函数y=-,
作函数图象如图,
在第二象限,函数y=m2+2的y值随m的增大而减小,函数y=-的y值随m的增大而增大,
当m=-2时y=m2+2=4+2=6,y=-=-=2,
∵6>2,
∴交点横坐标大于-2,
当m=-1时,y=m2+2=1+2=3,y=-=-=4,
∵3<4,
∴交点横坐标小于-1,
∴-2<m<-1.
故选A.
考点:1.二次函数的图象;2.反比例函数的图象.
3、C
【解析】
由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.
【详解】
∵∠A是公共角,
∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;
当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;
AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,
故选C.
4、D
【解析】
直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.
【详解】
2a2+3a2=5a2.
故选D.
【点睛】
本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.
5、B
【解析】
在这组数据中出现次数最多的是1.1,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数.
【详解】
在这组数据中出现次数最多的是1.1,即众数是1.1.
要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1.1,所以中位数是1.1.
故选B.
【点睛】
本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.
6、D
【解析】
∵函数的图象过点A(1,m),B(4,n),
∴m==,n==3,
∴A(1,),B(4,3),
过A作AC∥x轴,交B′B的延长线于点C,则C(4,),
∴AC=4﹣1=3,
∵曲线段AB扫过的面积为9(图中的阴影部分),
∴AC•AA′=3AA′=9,
∴AA′=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,
∴新图象的函数表达式是.
故选D.
7、A
【解析】
根据科学记数法的表示方法解答.
【详解】
解:把这个数用科学记数法表示为.
故选:.
【点睛】
此题重点考查学生对科学记数法的应用,熟练掌握小于0的数用科学记数法表示法是解题的关键.
8、B
【解析】
试题分析:对于一元二次方程,当△=时方程有两个不相等的实数根,当△=时方程有两个相等的实数根,当△=时方程没有实数根.根据题意可得:△=,则方程有两个不相等的实数根.
9、B
【解析】
∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,
∵AC的垂直平分线交AD于点E,∴AE=CE,
∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12,
故选B.
10、D
【解析】
试题解析:A原式=2x2,故A不正确;
B原式=x6,故B不正确;
C原式=x5,故C不正确;
D原式=x2-x2=0,故D正确;
故选D
考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
画树状图列出所有等可能结果,从中找到能两次摸到的球上数之和是负数的结果,根据概率公式计算可得.
【详解】
解:画树状图如下:
由树状图可知共有9种等可能结果,其中两次摸到的球上数之和是负数的有6种结果,
所以两次摸到的球上数之和是负数的概率为,
故答案为:.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
12、1
【解析】
试题分析:由m与n为已知方程的解,利用根与系数的关系求出m+n=4,mn=﹣3,将所求式子利用完全平方公式变形后,即﹣mn+=﹣3mn=16+9=1.
故答案为1.
考点:根与系数的关系.
13、2.58×1
【解析】
科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.258 000=2.58×1.
14、-1
【解析】
先设D(a,b),得出CO=-a,CD=AB=b,k=ab,再根据△BCE的面积是6,得出BC×OE=1,最后根据AB∥OE,得出,即BC•EO=AB•CO,求得ab的值即可.
【详解】
设D(a,b),则CO=-a,CD=AB=b,
∵矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,
∴k=ab,
∵△BCE的面积是6,
∴×BC×OE=6,即BC×OE=1,
∵AB∥OE,
∴,即BC•EO=AB•CO,
∴1=b×(-a),即ab=-1,
∴k=-1,
故答案为-1.
【点睛】
本题主要考查了反比例函数系数k的几何意义,矩形的性质以及平行线分线段成比例定理的综合应用,能很好地考核学生分析问题,解决问题的能力.解题的关键是将△BCE的面积与点D的坐标联系在一起,体现了数形结合的思想方法.
15、1
【解析】
根据题意可以分别求得a1,a2,a3,a4,从而可以发现这组数据的特点,三个一循环,从而可以求得a2019的值.
【详解】
解:由题意可得,
a1=52+1=26,
a2=(2+6)2+1=65,
a3=(6+5)2+1=1,
a4=(1+2+2)2+1=26,
…
∴2019÷3=673,
∴a2019= a3=1,
故答案为:1.
【点睛】
本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a2019的值.
16、31°.
【解析】
试题分析:由AB∥CD,根据平行线的性质得∠1=∠EFD=62°,然后根据角平分线的定义即可得到∠2的度数.
∵AB∥CD,
∴∠1=∠EFD=62°,
∵FG平分∠EFD,
∴∠2=∠EFD=×62°=31°.
故答案是31°.
考点:平行线的性质.
17、<
【解析】
把点(-1,a)、(-2,b)分别代入抛物线,则有:
a=1-2-3=-4,b=4-4-3=-3,
-4<-3,
所以a 故答案为<.
三、解答题(共7小题,满分69分)
18、(1)y=﹣(x+1)1;(1)点B(1,﹣1)不在这个函数的图象上;(3)抛物线向左平移1个单位或平移5个单位函数,即可过点B;
【解析】
(1)根据待定系数法即可得出二次函数的解析式;
(1)代入B(1,-1)即可判断;
(3)根据题意设平移后的解析式为y=-(x+1+m)1,代入B的坐标,求得m的植即可.
【详解】
解:(1)∵二次函数y=a(x+m)1的顶点坐标为(﹣1,0),
∴m=1,
∴二次函数y=a(x+1)1,
把点A(﹣1,﹣)代入得a=﹣,
则抛物线的解析式为:y=﹣(x+1)1.
(1)把x=1代入y=﹣(x+1)1得y=﹣≠﹣1,
所以,点B(1,﹣1)不在这个函数的图象上;
(3)根据题意设平移后的解析式为y=﹣(x+1+m)1,
把B(1,﹣1)代入得﹣1=﹣(1+1+m)1,
解得m=﹣1或﹣5,
所以抛物线向左平移1个单位或平移5个单位函数,即可过点B.
【点睛】
本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的性质以及图象与几何变换.
19、(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商场每天销售这种商品的销售利润不能达到500元.
【解析】
(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.
(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.
【详解】
(1)由题意得:每件商品的销售利润为(x﹣2)元,那么m件的销售利润为y=m(x﹣2).
又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.
∵x﹣2≥0,∴x≥2.
又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求关系式为y=﹣3x2+252x﹣1(2≤x≤54).
(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.
∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.
【点睛】
本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.
20、-4
【解析】
分析:第一项根据乘方的意义计算,第二项非零数的零次幂等于1,第三项根据特殊角锐角三角函数值计算,第四项根据绝对值的意义化简.
详解:原式=-4+1-2×+-1=-4
点睛:本题考查了实数的运算,熟练掌握乘方的意义,零指数幂的意义,及特殊角锐角三角函数,绝对值的意义是解答本题的关键.
21、(1)5;(2)1或﹣1.
【解析】
(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;
(2)由原式=(a-b)2+2(a+b)可得(a-b)2+2×4=17,据此进一步计算可得.
【详解】
(1)原式=ab+a+b+1﹣ab=a+b+1,
当a+b=4时,原式=4+1=5;
(2)∵a2﹣2ab+b2+2a+2b=(a﹣b)2+2(a+b),
∴(a﹣b)2+2×4=17,
∴(a﹣b)2=9,
则a﹣b=1或﹣1.
【点睛】
本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的运算法则及整体思想的运用.
22、(1)见解析 (2)见解析 (3) 9
【解析】
试题分析:(1)将△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1,如图所示;
(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,如图所示.
试题解析:(1)根据题意画出图形,△A1B1C1为所求三角形;
(2)根据题意画出图形,△A2B2C2为所求三角形.
考点:1.作图-位似变换,2. 作图-平移变换
23、(1)(2,﹣2);
(2)(1,0);
(3)1.
【解析】
试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;
(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;
(3)利用等腰直角三角形的性质得出△A2B2C2的面积.
试题解析:(1)如图所示:C1(2,﹣2);
故答案为(2,﹣2);
(2)如图所示:C2(1,0);
故答案为(1,0);
(3)∵=20,=20,=40,
∴△A2B2C2是等腰直角三角形,
∴△A2B2C2的面积是:××=1平方单位.
故答案为1.
考点:1、平移变换;2、位似变换;3、勾股定理的逆定理
24、(1)见解析;(2)t=(6+6),最小值等于12;(3)t=6秒或6秒时,△EPQ是直角三角形
【解析】
(1)由∠ECF=∠BCD得∠DCF=∠BCE,结合DC=BC、CE=CF证△DCF≌△BCE即可得;
(2)作BE′⊥DA交DA的延长线于E′.当点E运动至点E′时,由DF=BE′知此时DF最小,求得BE′、AE′即可得答案;
(3)①∠EQP=90°时,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根据AB=CD=6,tan∠ABC=tan∠ADC=2即可求得DE;
②∠EPQ=90°时,由菱形ABCD的对角线AC⊥BD知EC与AC重合,可得DE=6.
【详解】
(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,
∴∠DCF=∠BCE,
∵四边形ABCD是菱形,
∴DC=BC,
在△DCF和△BCE中,
,
∴△DCF≌△BCE(SAS),
∴DF=BE;
(2)如图1,作BE′⊥DA交DA的延长线于E′.
当点E运动至点E′时,DF=BE′,此时DF最小,
在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,
∴设AE′=x,则BE′=2x,
∴AB=x=6,x=6,
则AE′=6
∴DE′=6+6,DF=BE′=12,
时间t=6+6,
故答案为:6+6,12;
(3)∵CE=CF,
∴∠CEQ<90°,
①当∠EQP=90°时,如图2①,
∵∠ECF=∠BCD,BC=DC,EC=FC,
∴∠CBD=∠CEF,
∵∠BPC=∠EPQ,
∴∠BCP=∠EQP=90°,
∵AB=CD=6,tan∠ABC=tan∠ADC=2,
∴DE=6,
∴t=6秒;
②当∠EPQ=90°时,如图2②,
∵菱形ABCD的对角线AC⊥BD,
∴EC与AC重合,
∴DE=6,
∴t=6秒,
综上所述,t=6秒或6秒时,△EPQ是直角三角形.
【点睛】
此题是菱形与动点问题,考查菱形的性质,三角形全等的判定定理,等腰三角形的性质,最短路径问题,注意(3)中的直角没有明确时应分情况讨论解答.
相关试卷
这是一份2023年吉林省长春市二道区中考数学一模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年吉林省长春市二道区英俊中学中考数学一模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022届长春市二道区达标名校中考数学四模试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,若△÷,则“△”可能是,如下图所示,该几何体的俯视图是等内容,欢迎下载使用。