


2022年江苏省泰州市靖江实验学校中考数学模拟预测题含解析
展开1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.已知抛物线的图像与轴交于、两点(点在点的右侧),与轴交于点.给出下列结论:①当的条件下,无论取何值,点是一个定点;②当的条件下,无论取何值,抛物线的对称轴一定位于轴的左侧;③的最小值不大于;④若,则.其中正确的结论有( )个.
A.1个B.2个C.3个D.4个
2.一个几何体的三视图如图所示,则该几何体的形状可能是( )
A. B.
C. D.
3.已知一组数据,,,,的平均数是2,方差是,那么另一组数据,,,,,的平均数和方差分别是 .
A.B.C.D.
4.在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H.∠CBE=∠BAD,有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△BEC=S△ADF.其中正确的有( )
A.1个B.2个C.3个D.4个
5.已知一元二次方程x2-8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为( )
A.13B.11或13C.11D.12
6.如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )
A.B.
C.D.
7.下列判断正确的是( )
A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上
B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨
C.“篮球队员在罚球线上投篮一次,投中”为随机事件
D.“a是实数,|a|≥0”是不可能事件
8.分式的值为0,则x的取值为( )
A.x=-3B.x=3C.x=-3或x=1D.x=3或x=-1
9.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( )
A.(2,2)B.(﹣2,4)C.(﹣2,2)D.(﹣2,2)
10.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是( )
A.8B.﹣8C.﹣12D.12
二、填空题(共7小题,每小题3分,满分21分)
11.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=_____.
12.如图,ABCDE是正五边形,已知AG=1,则FG+JH+CD=_____.
13.一组数据:1,2,a,4,5的平均数为3,则a=_____.
14.2018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区.据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有________万人.
15.图中圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD= .
16.如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC的度数为_____.
17.如图,正方形ABCD的边长为2,点B与原点O重合,与反比例函数y=的图像交于E、F两点,若△DEF的面积为,则k的值_______ .
三、解答题(共7小题,满分69分)
18.(10分)如图,已知的直径,是的弦,过点作的切线交的延长线于点,过点作,垂足为,与交于点,设,的度数分别是,,且.
(1)用含的代数式表示;
(2)连结交于点,若,求的长.
19.(5分)如图①是一副创意卡通圆规,图②是其平面示意图,OA是支撑臂,OB是旋转臂.使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.
(1)当∠AOB=18°时,求所作圆的半径(结果精确到0.01cm);
(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度(结果精确到0.01cm,参考数据:sin9°≈0.1564,cs9°≈0.9877,sin18°≈0.3090,cs18°≈0.9511,可使用科学计算器).
20.(8分)已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.
(1)当y1﹣y2=4时,求m的值;
(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).
21.(10分)解不等式:﹣≤1
22.(10分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:
请根据以上图表信息解答下列问题:频数分布表中的 , ;在扇形统计图中,“排球”所在的扇形的圆心角为 度;全校有多少名学生选择参加乒乓球运动?
23.(12分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间(单位:小时),将学生分成五类: 类( ),类(),类(),类(),类(),绘制成尚不完整的条形统计图如图11.
根据以上信息,解答下列问题: 类学生有 人,补全条形统计图;类学生人数占被调查总人数的 %;从该班做义工时间在的学生中任选2人,求这2人做义工时间都在 中的概率.
24.(14分)2017年10月31日,在广州举行的世界城市日全球主场活动开幕式上,住建部公布许昌成为“国家生态园林城市”在2018年植树节到来之际,许昌某中学购买了甲、乙两种树木用于绿化校园.若购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元.
(1)求甲种树和乙种树的单价;
(2)按学校规划,准备购买甲、乙两种树共200棵,且甲种树的数量不少于乙种树的数量的,请设计出最省钱的购买方案,并说明理由.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
①利用抛物线两点式方程进行判断;
②根据根的判别式来确定a的取值范围,然后根据对称轴方程进行计算;
③利用顶点坐标公式进行解答;
④利用两点间的距离公式进行解答.
【详解】
①y=ax1+(1-a)x-1=(x-1)(ax+1).则该抛物线恒过点A(1,0).故①正确;
②∵y=ax1+(1-a)x-1(a>0)的图象与x轴有1个交点,
∴△=(1-a)1+8a=(a+1)1>0,
∴a≠-1.
∴该抛物线的对称轴为:x=,无法判定的正负.
故②不一定正确;
③根据抛物线与y轴交于(0,-1)可知,y的最小值不大于-1,故③正确;
④∵A(1,0),B(-,0),C(0,-1),
∴当AB=AC时,,
解得:a=,故④正确.
综上所述,正确的结论有3个.
故选C.
【点睛】
考查了二次函数与x轴的交点及其性质.(1).抛物线是轴对称图形.对称轴为直线x = - ,对称轴与抛物线唯一的交点为抛物线的顶点P;特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0);(1).抛物线有一个顶点P,坐标为P ( -b/1a ,(4ac-b1)/4a ),当-=0,〔即b=0〕时,P在y轴上;当Δ= b1-4ac=0时,P在x轴上;(3).二次项系数a决定抛物线的开口方向和大小;当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;|a|越大,则抛物线的开口越小.(4).一次项系数b和二次项系数a共同决定对称轴的位置;当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;(5).常数项c决定抛物线与y轴交点;抛物线与y轴交于(0,c);(6).抛物线与x轴交点个数
Δ= b1-4ac>0时,抛物线与x轴有1个交点;Δ= b1-4ac=0时,抛物线与x轴有1个交点;
Δ= b1-4ac<0时,抛物线与x轴没有交点.X的取值是虚数(x= -b±√b1-4ac 乘上虚数i,整个式子除以1a);当a>0时,函数在x= -b/1a处取得最小值f(-b/1a)=〔4ac-b1〕/4a;在{x|x<-b/1a}上是减函数,在{x|x>-b/1a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b1/4a}相反不变;当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax1+c(a≠0).
2、D
【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.
考点:由三视图判断几何体.
视频
3、D
【解析】
根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.
【详解】
解:∵数据x1,x2,x3,x4,x5的平均数是2,
∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;
∵数据x1,x2,x3,x4,x5的方差为,
∴数据3x1,3x2,3x3,3x4,3x5的方差是×32=3,
∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,
故选D.
【点睛】
本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.
4、C
【解析】
根据题意和图形,可以判断各小题中的结论是否成立,从而可以解答本题.
【详解】
∵在△ABC中,AD和BE是高,
∴∠ADB=∠AEB=∠CEB=90°,
∵点F是AB的中点,
∴FD=AB,FE=AB,
∴FD=FE,①正确;
∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,
∴∠ABC=∠C,
∴AB=AC,
∵AD⊥BC,
∴BC=2CD,∠BAD=∠CAD=∠CBE,
在△AEH和△BEC中, ,
∴△AEH≌△BEC(ASA),
∴AH=BC=2CD,②正确;
∵∠BAD=∠CBE,∠ADB=∠CEB,
∴△ABD∽△BCE,
∴,即BC•AD=AB•BE,
∵∠AEB=90°,AE=BE,
∴AB=BE
BC•AD=BE•BE,
∴BC•AD=AE2;③正确;
设AE=a,则AB=a,
∴CE=a﹣a,
∴=,
即 ,
∵AF=AB,
∴ ,
∴S△BEC≠S△ADF,故④错误,
故选:C.
【点睛】
本题考查相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
5、B
【解析】
试题解析:x2-8x+15=0,
分解因式得:(x-3)(x-5)=0,
可得x-3=0或x-5=0,
解得:x1=3,x2=5,
若3为底边,5为腰时,三边长分别为3,5,5,周长为3+5+5=1;
若3为腰,5为底边时,三边长分别为3,3,5,周长为3+3+5=11,
综上,△ABC的周长为11或1.
故选B.
考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.
6、A
【解析】
由图形可以知道,由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式.
【详解】
解:大正方形的面积-小正方形的面积=,
矩形的面积=,
故,
故选:A.
【点睛】
本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键.
7、C
【解析】
直接利用概率的意义以及随机事件的定义分别分析得出答案.
【详解】
A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;
B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;
C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;
D、“a是实数,|a|≥0”是必然事件,故此选项错误.
故选C.
【点睛】
此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.
8、A
【解析】
分式的值为2的条件是:(2)分子等于2;(2)分母不为2.两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】
∵原式的值为2,
∴,
∴(x-2)(x+3)=2,即x=2或x=-3;
又∵|x|-2≠2,即x≠±2.
∴x=-3.
故选:A.
【点睛】
此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件.
9、D
【解析】
分析:作BC⊥x轴于C,如图,根据等边三角形的性质得则易得A点坐标和O点坐标,再利用勾股定理计算出然后根据第二象限点的坐标特征可写出B点坐标;由旋转的性质得则点A′与点B重合,于是可得点A′的坐标.
详解:作BC⊥x轴于C,如图,
∵△OAB是边长为4的等边三角形
∴
∴A点坐标为(−4,0),O点坐标为(0,0),
在Rt△BOC中,
∴B点坐标为
∵△OAB按顺时针方向旋转,得到△OA′B′,
∴
∴点A′与点B重合,即点A′的坐标为
故选D.
点睛:考查图形的旋转,等边三角形的性质.求解时,注意等边三角形三线合一的性质.
10、D
【解析】
根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.
【详解】
∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.
故选D.
【点睛】
本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、2
【解析】
首先连接BD,由AB是⊙O的直径,可得∠C=∠D=90°,然后由∠BAC=60°,弦AD平分∠BAC,求得∠BAD的度数,又由AD=6,求得AB的长,继而求得答案.
【详解】
解:连接BD,
∵AB是⊙O的直径,
∴∠C=∠D=90°,
∵∠BAC=60°,弦AD平分∠BAC,
∴∠BAD=∠BAC=30°,
∴在Rt△ABD中,AB==4,
∴在Rt△ABC中,AC=AB•cs60°=4×=2.
故答案为2.
12、+1
【解析】
根据对称性可知:GJ∥BH,GB∥JH,
∴四边形JHBG是平行四边形,
∴JH=BG,
同理可证:四边形CDFB是平行四边形,
∴CD=FB,
∴FG+JH+CD=FG+BG+FB=2BF,
设FG=x,
∵∠AFG=∠AFB,∠FAG=∠ABF=36°,
∴△AFG∽△BFA,
∴AF2=FG•BF,
∵AF=AG=BG=1,
∴x(x+1)=1,
∴x=(负根已经舍弃),
∴BF=+1=,
∴FG+JH+CD=+1.
故答案为+1.
13、1
【解析】
依题意有:(1+2+a+4+5)÷5=1,解得a=1.故答案为1.
14、1
【解析】
分析:用总人数乘以样本中出境游东南亚地区的百分比即可得.
详解:出境游东南亚地区的游客约有700×(1﹣16%﹣15%﹣11%﹣13%)=700×45%=1(万).故答案为1.
点睛:本题主要考查扇形统计图与样本估计总体,解题的关键是掌握各项目的百分比之和为1,利用样本估计总体思想的运用.
15、30°
【解析】
试题分析:∵CA∥OB,∠AOB=30°,∴∠CAO=∠AOB=30°.
∵OA=OC,∴∠C=∠OAC=30°.
∵∠C和∠AOD是同弧所对的圆周角和圆心角,∴∠AOD=2∠C=60°.
∴∠BOD=60°-30°=30°.
16、140°
【解析】
如图,连接BD,∵点E、F分别是边AB、AD的中点,
∴EF是△ABD的中位线,
∴EF∥BD,BD=2EF=12,
∴∠ADB=∠AFE=50°,
∵BC=15,CD=9,BD=12,
∴BC2=225,CD2=81,BD2=144,
∴CD2+BD2=BC2,
∴∠BDC=90°,
∴∠ADC=∠ADB+∠BDC=50°+90°=140°.
故答案为:140°.
17、1
【解析】
利用对称性可设出E、F的两点坐标,表示出△DEF的面积,可求出k的值.
【详解】
解:设AF=a(a<2),则F(a,2),E(2,a),
∴FD=DE=2−a,
∴S△DEF=DF•DE==,
解得a=或a=(不合题意,舍去),
∴F(,2),
把点F(,2)代入
解得:k=1,
故答案为1.
【点睛】
本题主要考查反比例函数与正方形和三角形面积的运用,表示出E和F的坐标是关键.
三、解答题(共7小题,满分69分)
18、(1);(2)
【解析】
(1)连接OC,根据切线的性质得到OC⊥DE,可以证明AD∥OC,根据平行线的性质可得,则根据等腰三角形的性质可得,利用,化简计算即可得到答案;
(2)连接CF,根据,可得,利用中垂线和等腰三角形的性质可证四边形是平行四边形,得到△AOF为等边三角形,由并可得四边形是菱形,可证是等边三角形,有∠FAO=60°,再根据弧长公式计算即可.
【详解】
解:(1)如图示,连结,
∵是的切线,∴.
又,∴,
∴,
∴.
∵,
∴.∴.
∵,
∴.
∴,即.
(2)如图示,连结,
∵,,
∴,
∴,
∴,
∴,
∵,
∴四边形是平行四边形,
∵,
∴四边形是菱形,
∴,
∴是等边三角形,
∴,
∴,
∵,
∴的长.
【点睛】
本题考查的是切线的性质、菱形的判定和性质、弧长的计算,掌握切线的性质定理、弧长公式是解题的关键.
19、 (1)3.13cm(2)铅笔芯折断部分的长度约是0.98cm
【解析】
试题分析:(1)根据题意作辅助线OC⊥AB于点C,根据OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度数,从而可以求得AB的长;
(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决.
试题解析:(1)作OC⊥AB于点C,如右图2所示,由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°,∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13cm,即所作圆的半径约为3.13cm;
(2)作AD⊥OB于点D,作AE=AB,如下图3所示,∵保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm,即铅笔芯折断部分的长度是0.98cm.
考点:解直角三角形的应用;探究型.
20、(1)m=1;(2)点P坐标为(﹣2m,1)或(6m,1).
【解析】
(1)先根据反比例函数的图象经过点A(﹣4,﹣3),利用待定系数法求出反比例函数的解
析式为y=,再由反比例函数图象上点的坐标特征得出y1==,y2==,然后根据y1﹣y2=4列出方程﹣=4,解方程即可求出m的值;
(2)设BD与x轴交于点E.根据三角形PBD的面积是8列出方程••PE=8,求出PE=4m,再由E(2m,1),点P在x轴上,即可求出点P的坐标.
【详解】
解:(1)设反比例函数的解析式为y=,
∵反比例函数的图象经过点A(﹣4,﹣3),
∴k=﹣4×(﹣3)=12,
∴反比例函数的解析式为y=,
∵反比例函数的图象经过点B(2m,y1),C(6m,y2),
∴y1==,y2==,
∵y1﹣y2=4,
∴﹣=4,
∴m=1,
经检验,m=1是原方程的解,
故m的值是1;
(2)设BD与x轴交于点E,
∵点B(2m,),C(6m,),过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,
∴D(2m,),BD=﹣=,
∵三角形PBD的面积是8,
∴BD•PE=8,
∴••PE=8,
∴PE=4m,
∵E(2m,1),点P在x轴上,
∴点P坐标为(﹣2m,1)或(6m,1).
【点睛】
本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征以及三角形的面积,正确求出双曲线的解析式是解题的关键.
21、x≥.
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
【详解】
2(2﹣3x)﹣3(x﹣1)≤6,
4﹣6x﹣3x+3≤6,
﹣6x﹣3x≤6﹣4﹣3,
﹣9x≤﹣1,
x≥.
【点睛】
考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
22、 (1)24,1;(2) 54;(3)360.
【解析】
(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;
(2)利用360°乘以对应的百分比即可求得;
(3)求得全校总人数,然后利用总人数乘以对应的百分比求解.
【详解】
(1)抽取的人数是36÷30%=120(人),
则a=120×20%=24,
b=120﹣30﹣24﹣36﹣12=1.
故答案是:24,1;
(2)“排球”所在的扇形的圆心角为360°×=54°,
故答案是:54;
(3)全校总人数是120÷10%=1200(人),
则选择参加乒乓球运动的人数是1200×30%=360(人).
23、(1)5;(2)36%;(3).
【解析】
试题分析:(1)根据:数据总数-已知的小组频数=所求的小组频数,进行求解,然后根据所求数据补全条形图即可;
(2)根据:小组频数= ,进行求解即可;
(3)利用列举法求概率即可.
试题解析:
(1)E类:50-2-3-22-18=5(人),故答案为:5;
补图如下:
(2)D类:1850×100%=36%,故答案为:36%;
(3)设这5人为
有以下10种情况:
其中,两人都在 的概率是: .
24、(1)甲种树的单价为50元/棵,乙种树的单价为40元/棵.(2)当购买1棵甲种树、133棵乙种树时,购买费用最低,理由见解析.
【解析】
(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,根据“购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设购买甲种树a棵,则购买乙种树(200-a)棵,根据甲种树的数量不少于乙种树的数量的可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由甲种树的单价比乙种树的单价贵,即可找出最省钱的购买方案.
【详解】
解:(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,
根据题意得:
,
解得:
答:甲种树的单价为50元/棵,乙种树的单价为40元/棵.
(2)设购买甲种树a棵,则购买乙种树(200﹣a)棵,
根据题意得:
解得:
∵a为整数,
∴a≥1.
∵甲种树的单价比乙种树的单价贵,
∴当购买1棵甲种树、133棵乙种树时,购买费用最低.
【点睛】
一元一次不等式的应用,二元一次方程组的应用,读懂题目,是解题的关键.
运动项目
频数(人数)
羽毛球
30
篮球
乒乓球
36
排球
足球
12
江苏省泰州市靖江市实验校2022年中考数学模拟预测题含解析: 这是一份江苏省泰州市靖江市实验校2022年中考数学模拟预测题含解析,共19页。试卷主要包含了如图,在中,,已知,化简,如图,,则的度数为等内容,欢迎下载使用。
江苏省泰州市靖江实验学校2022年中考联考数学试题含解析: 这是一份江苏省泰州市靖江实验学校2022年中考联考数学试题含解析,共19页。试卷主要包含了如图等内容,欢迎下载使用。
2022年浙江省绍兴实验学校中考数学模拟预测题含解析: 这是一份2022年浙江省绍兴实验学校中考数学模拟预测题含解析,共19页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。