2022年内蒙古包头市昆都仑区重点名校中考适应性考试数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( )
A. B. C. D.
2.为了配合 “我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:
A.140元 B.150元 C.160元 D.200元
3.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有( )
A.2个 B.3个 C.4个 D.5个
4.若代数式,,则M与N的大小关系是( )
A. B. C. D.
5.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:
鞋的尺码/cm
23
23.5
24
24.5
25
销售量/双
1
3
3
6
2
则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( )
A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,24
6.如图所示的工件,其俯视图是( )
A. B. C. D.
7.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠DEA=( )
A.40° B.110° C.70° D.140°
8.下列运算正确的是( )
A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6 C.(a﹣b)2=a2﹣b2 D.a3+a2=2a5
9.下列运算正确的是( )
A.a3•a2=a6 B.(2a)3=6a3
C.(a﹣b)2=a2﹣b2 D.3a2﹣a2=2a2
10.下列算式中,结果等于x6的是( )
A.x2•x2•x2 B.x2+x2+x2 C.x2•x3 D.x4+x2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如果关于x的方程x2+2ax﹣b2+2=0有两个相等的实数根,且常数a与b互为倒数,那么a+b=_____.
12.如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是( )
A.1+ B.4+ C.4 D.-1+
13.如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,DE交AB于点F,若AB=AC,DB=BF,则AF与BF的比值为_____.
14.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=__________°.
15.如图,小阳发现电线杆的影子落在土坡的坡面和地面上,量得,米,与地面成角,且此时测得米的影长为米,则电线杆的高度为__________米.
16.在矩形ABCD中,AB=4,BC=9,点E是AD边上一动点,将边AB沿BE折叠,点A的对应点为A′,若点A′到矩形较长两对边的距离之比为1:3,则AE的长为_____.
三、解答题(共8题,共72分)
17.(8分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
(1)甲、乙两工程队每天能改造道路的长度分别是多少米?
(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
18.(8分)先化简,再求值:,其中x是从-1、0、1、2中选取一个合适的数.
19.(8分)图1是一商场的推拉门,已知门的宽度米,且两扇门的大小相同(即),将左边的门绕门轴向里面旋转,将右边的门绕门轴向外面旋转,其示意图如图2,求此时与之间的距离(结果保留一位小数).(参考数据:,,)
20.(8分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高 米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)
21.(8分)解分式方程:
- =
22.(10分)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF
(1)判断AF与⊙O的位置关系并说明理由;
(2)若⊙O的半径为4,AF=3,求AC的长.
23.(12分)(1)问题发现
如图1,在Rt△ABC中,∠A=90°,=1,点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接 CD.
(1)①求的值;②求∠ACD的度数.
(2)拓展探究
如图 2,在Rt△ABC中,∠A=90°,=k.点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD,请判断∠ACD与∠B 的数量关系以及PB与CD之间的数量关系,并说明理由.
(3)解决问题
如图 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是边BC上一动点(不与点B重合),∠PAD=∠BAC,∠APD=∠B,连接CD.若 PA=5,请直接写出CD的长.
24.如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精确到0.1m)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
试题分析:根据题意可知总共有10种等可能的结果,一次就能打开该密码的结果只有1种,所以P(一次就能打该密码)=,故答案选A.
考点:概率.
2、B
【解析】
试题分析:此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设李明同学此次购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150,即:小慧同学不凭卡购书的书价为150元.
故选B.
考点:一元一次方程的应用
3、C
【解析】
分为三种情况:①AP=OP,②AP=OA,③OA=OP,分别画出即可.
【详解】
如图,
分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.
∴以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.
故选C.
【点睛】
本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.
4、C
【解析】
∵,
∴,
∴.
故选C.
5、A
【解析】
【分析】根据众数和中位数的定义进行求解即可得.
【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,
这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,
故选A.
【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.
6、B
【解析】
试题分析:从上边看是一个同心圆,外圆是实线,內圆是虚线,
故选B.
点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.看得见部分的轮廓线要画成实线,看不见部分的轮廓线要画成虚线.
7、B
【解析】
先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=40°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数,进而得到∠DEA的度数.
【详解】
∵AB∥CD,
∴∠ACD+∠BAC=180°,
∵∠ACD=40°,
∴∠BAC=180°﹣40°=140°,
∵AE平分∠CAB,
∴∠BAE=∠BAC=×140°=70°,
∴∠DEA=180°﹣∠BAE=110°,
故选B.
【点睛】
本题考查了平行线的性质和角平分线的定义,解题的关键是熟练掌握两直线平行,同旁内角互补.
8、B
【解析】
根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.
【详解】
解:A、因为﹣(a﹣1)=﹣a+1,故本选项错误;
B、(﹣2a3)2=4a6,正确;
C、因为(a﹣b)2=a2﹣2ab+b2,故本选项错误;
D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误.
故选B.
【点睛】
本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键.
9、D
【解析】
试题分析:根据同底数幂相乘,底数不变指数相加求解求解;
根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘求解;
根据完全平方公式求解;
根据合并同类项法则求解.
解:A、a3•a2=a3+2=a5,故A错误;
B、(2a)3=8a3,故B错误;
C、(a﹣b)2=a2﹣2ab+b2,故C错误;
D、3a2﹣a2=2a2,故D正确.
故选D.
点评:本题考查了完全平方公式,合并同类项法则,同底数幂的乘法,积的乘方的性质,熟记性质与公式并理清指数的变化是解题的关键.
10、A
【解析】试题解析:A、x2•x2•x2=x6,故选项A符合题意;
B、x2+x2+x2=3x2,故选项B不符合题意;
C、x2•x3=x5,故选项C不符合题意;
D、x4+x2,无法计算,故选项D不符合题意.
故选A.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、±1.
【解析】
根据根的判别式求出△=0,求出a1+b1=1,根据完全平方公式求出即可.
【详解】
解:∵关于x的方程x1+1ax-b1+1=0有两个相等的实数根,
∴△=(1a)1-4×1×(-b1+1)=0,
即a1+b1=1,
∵常数a与b互为倒数,
∴ab=1,
∴(a+b)1=a1+b1+1ab=1+3×1=4,
∴a+b=±1,
故答案为±1.
【点睛】
本题考查了根的判别式和解高次方程,能得出等式a1+b1=1和ab=1是解此题的关键.
12、A
【解析】
根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-,且OB=AB=2,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B的坐标可表示为(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到满足条件的t的值.
【详解】
如图,
∵点A坐标为(-2,2),
∴k=-2×2=-4,
∴反比例函数解析式为y=-,
∵OB=AB=2,
∴△OAB为等腰直角三角形,
∴∠AOB=45°,
∵PQ⊥OA,
∴∠OPQ=45°,
∵点B和点B′关于直线l对称,
∴PB=PB′,BB′⊥PQ,
∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,
∴B′P⊥y轴,
∴点B′的坐标为(- ,t),
∵PB=PB′,
∴t-2=|-|=,
整理得t2-2t-4=0,解得t1= ,t2=1- (不符合题意,舍去),
∴t的值为.
故选A.
【点睛】
本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程.
13、
【解析】
先利用旋转的性质得到BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,再利用等腰三角形的性质和三角形内角和定理证明∠ABD=∠A,则BD=AD,然后证明△BDC∽△ABC,则利用相似比得到BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,最后利用解方程求出AF与BF的比值.
【详解】
∵如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,∴BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,∵∠ABE=∠ADF,∴∠CBD=∠ADF,∵DB=BF,∴BF=BD=BC,而∠C=∠EDB,∴∠CBD=∠ABD,∴∠ABC=∠C=2∠ABD,∵∠BDC=∠A+∠ABD,∴∠ABD=∠A,∴BD=AD,∴CD=AF,∵AB=AC,∴∠ABC=∠C=∠BDC,∴△BDC∽△ABC,∴BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,整理得AF2+BF∙AF-BF2=0,∴AF=BF,即AF与BF的比值为.故答案是.
【点睛】
本题主要考查了旋转的性质、等腰三角形的性质、相似三角形的性质,熟练掌握这些知识点并灵活运用是解题的关键.
14、1
【解析】
试题分析:由三角形的外角的性质可知,∠1=90°+30°=1°,故答案为1.
考点:三角形的外角性质;三角形内角和定理.
15、(14+2)米
【解析】
过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F,根据直角三角形30°角所对的直角边等于斜边的一半求出DE,再根据勾股定理求出CE,然后根据同时同地物高与影长成正比列式求出EF,再求出BF,再次利用同时同地物高与影长成正比列式求解即可.
【详解】
如图,过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F.
∵CD=8,CD与地面成30°角,
∴DE=CD=×8=4,
根据勾股定理得:CE===4.
∵1m杆的影长为2m,
∴=,
∴EF=2DE=2×4=8,
∴BF=BC+CE+EF=20+4+8=(28+4).
∵=,
∴AB=(28+4)=14+2.
故答案为(14+2).
【点睛】
本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比的性质,作辅助线求出AB的影长若全在水平地面上的长BF是解题的关键.
16、或
【解析】
由,,得,所以.再以①和②两种情况分类讨论即可得出答案.
【详解】
因为翻折,所以,,过作,交AD于F,交BC于G,根据题意,,.
若点在矩形ABCD的内部时,如图
则GF=AB=4,
由可知.
又.
.
又.
.
.
.
若
则,.
.
则.
.
.
若
则,.
.
则 .
.
.
故答案或.
【点睛】
本题主要考查了翻折问题和相似三角形判定,灵活运用是关键
错因分析:难题,失分原因有3点:(1)不能灵活运用矩形和折叠与动点问题叠的性质;(2)没有分情况讨论,由于点A′A′到矩形较长两对边的距离之比为1:3,需要分A′M:A′N=1:3,A′M:A′N=1:3和A′M:A′N=3:1,A′M:A′N=3:1这两种情况;(3)不能根据相似三角形对应边成比例求出三角形的边长.
三、解答题(共8题,共72分)
17、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.
【解析】
(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
【详解】
(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,
根据题意得:,
解得:x=40,
经检验,x=40是原分式方程的解,且符合题意,
∴x=×40=60,
答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;
(2)设安排甲队工作m天,则安排乙队工作天,
根据题意得:7m+5×≤145,
解得:m≥10,
答:至少安排甲队工作10天.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.
18、.
【解析】
先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=,由于x不能取±1,2,所以把x=0代入计算即可.
【详解】
,
=
=
=
=,
当x=0时,原式=.
19、1.4米.
【解析】
过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在Rt△MEF中利用勾股定理即可求出EM的长,此题得解.
【详解】
过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示,
∵AB=CD,AB+CD=AD=2,
∴AB=CD=1,
在Rt△ABE中,AB=1,∠A=37°,
∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8,
在Rt△CDF中,CD=1,∠D=45°,
∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7,
∵BE⊥AD,CF⊥AD,
∴BE∥CM,
又∵BE=CM,
∴四边形BEMC为平行四边形,
∴BC=EM,CM=BE.
在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,
∴EM=≈1.4,
∴B与C之间的距离约为1.4米.
【点睛】
本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,正确添加辅助线,构造直角三角形,利用勾股定理求出BC的长度是解题的关键.
20、2.1.
【解析】
据题意得出tanB = , 即可得出tanA, 在Rt△ADE中, 根据勾股定理可求得DE, 即可得出∠FCE的正切值, 再在Rt△CEF中, 设EF=x,即可求出x, 从而得出CF=1x的长.
【详解】
解:
据题意得tanB=,
∵MN∥AD,
∴∠A=∠B,
∴tanA=,
∵DE⊥AD,
∴在Rt△ADE中,tanA=,
∵AD=9,
∴DE=1,
又∵DC=0.5,
∴CE=2.5,
∵CF⊥AB,
∴∠FCE+∠CEF=90°,
∵DE⊥AD,
∴∠A+∠CEF=90°,
∴∠A=∠FCE,
∴tan∠FCE=
在Rt△CEF中,CE2=EF2+CF2
设EF=x,CF=1x(x>0),CE=2.5,
代入得()2=x2+(1x)2
解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”),
∴CF=1x=≈2.1,
∴该停车库限高2.1米.
【点睛】
点评: 本题考查了解直角三角形的应用, 坡面坡角问题和勾股定理, 解题的关键是坡度等于坡角的正切值.
21、方程无解
【解析】
找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,再代入最简公分母进行检验即可.
【详解】
解:方程的两边同乘(x+1)(x−1),
得:,
,
∴此方程无解
【点睛】
本题主要考查了解分式方程,解分式方程的步骤:①去分母;②解整式方程;③验根.
22、解:(1)AF与圆O的相切.理由为:
如图,连接OC,
∵PC为圆O切线,∴CP⊥OC.
∴∠OCP=90°.
∵OF∥BC,
∴∠AOF=∠B,∠COF=∠OCB.
∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.
∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,
∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.
∴AF为圆O的切线,即AF与⊙O的位置关系是相切.
(2)∵△AOF≌△COF,∴∠AOF=∠COF.
∵OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC.
∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根据勾股定理得:OF=1.
∵S△AOF=•OA•AF=•OF•AE,∴AE=.
∴AC=2AE=.
【解析】
试题分析:(1)连接OC,先证出∠3=∠2,由SAS证明△OAF≌△OCF,得对应角相等∠OAF=∠OCF,再根据切线的性质得出∠OCF=90°,证出∠OAF=90°,即可得出结论;
(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE.
试题解析:(1)连接OC,如图所示:
∵AB是⊙O直径,
∴∠BCA=90°,
∵OF∥BC,
∴∠AEO=90°,∠1=∠2,∠B=∠3,
∴OF⊥AC,
∵OC=OA,
∴∠B=∠1,
∴∠3=∠2,
在△OAF和△OCF中,
,
∴△OAF≌△OCF(SAS),
∴∠OAF=∠OCF,
∵PC是⊙O的切线,
∴∠OCF=90°,
∴∠OAF=90°,
∴FA⊥OA,
∴AF是⊙O的切线;
(2)∵⊙O的半径为4,AF=3,∠OAF=90°,
∴OF==1
∵FA⊥OA,OF⊥AC,
∴AC=2AE,△OAF的面积=AF•OA=OF•AE,
∴3×4=1×AE,
解得:AE=,
∴AC=2AE=.
考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质.
23、(1)1,45°;(2)∠ACD=∠B, =k;(3).
【解析】
(1)根据已知条件推出△ABP≌△ACD,根据全等三角形的性质得到PB=CD,∠ACD=∠B=45°,于是得到
根据已知条件得到△ABC∽△APD,由相似三角形的性质得到,得到 ABP∽△CAD,根据相似三角形的性质得到结论;
过A作AH⊥BC 于 H,得到△ABH 是等腰直角三角形,求得 AH=BH=4, 根据勾股定理得到根据相似三角形的性质得到 ,推出△ABP∽△CAD,根据相似三角形的性质即可得到结论.
【详解】
(1)∵∠A=90°,
∴AB=AC,
∴∠B=45°,
∵∠PAD=90°,∠APD=∠B=45°,
∴AP=AD,
∴∠BAP=∠CAD,
在△ABP 与△ACD 中,
AB=AC, ∠BAP=∠CAD,AP=AD,
∴△ABP≌△ACD,
∴PB=CD,∠ACD=∠B=45°,
∴=1,
(2)
∵∠BAC=∠PAD=90°,∠B=∠APD,
∴△ABC∽△APD,
∵∠BAP+∠PAC=∠PAC+∠CAD=90°,
∴∠BAP=∠CAD,
∴△ABP∽△CAD,
∴∠ACD=∠B,
(3)过 A 作 AH⊥BC 于 H,
∵∠B=45°,
∴△ABH 是等腰直角三角形,
∵
∴AH=BH=4,
∵BC=12,
∴CH=8,
∴
∴PH==3,
∴PB=1,
∵∠BAC=∠PAD=,∠B=∠APD,
∴△ABC∽△APD,
∴,
∵∠BAP+∠PAC=∠PAC+∠CAD,
∴∠BAP=∠CAD,
∴△ABP∽△CAD,
∴即
∴
过 A 作 AH⊥BC 于 H,
∵∠B=45°,
∴△ABH 是等腰直角三角形,
∵
∴AH=BH=4,
∵BC=12,
∴CH=8,
∴
∴PH==3,
∴PB=7,
∵∠BAC=∠PAD=,∠B=∠APD,
∴△ABC∽△APD,
∴,
∵∠BAP+∠PAC=∠PAC+∠CAD,
∴∠BAP=∠CAD,
∴△ABP∽△CAD,
∴即
∴
【点睛】
本题考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定
和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.
24、通信塔CD的高度约为15.9cm.
【解析】
过点A作AE⊥CD于E,设CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出关于x的方程,求出方程的解即可.
【详解】
过点A作AE⊥CD于E,
则四边形ABDE是矩形,
设CE=xcm,
在Rt△AEC中,∠AEC=90°,∠CAE=30°,
所以AE=xcm,
在Rt△CDM中,CD=CE+DE=CE+AB=(x+6)cm,
DM=cm,
在Rt△ABM中,BM=cm,
∵AE=BD,
∴,
解得:x=+3,
∴CD=CE+ED=+9≈15.9(cm),
答:通信塔CD的高度约为15.9cm.
【点睛】
本题考查了解直角三角形,能通过解直角三角形求出AE、BM的长度是解此题的关键.
2023年内蒙古包头市昆都仑区中考数学二模试卷(含解析): 这是一份2023年内蒙古包头市昆都仑区中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年内蒙古包头市昆都仑区中考试题猜想数学试卷含解析: 这是一份2022年内蒙古包头市昆都仑区中考试题猜想数学试卷含解析,共22页。试卷主要包含了如图,规定等内容,欢迎下载使用。
2021-2022学年内蒙古包头市东河区重点名校中考冲刺卷数学试题含解析: 这是一份2021-2022学年内蒙古包头市东河区重点名校中考冲刺卷数学试题含解析,共23页。试卷主要包含了若2<<3,则a的值可以是等内容,欢迎下载使用。