2022年江西省景德镇市乐平市中考数学考试模拟冲刺卷含解析
展开
这是一份2022年江西省景德镇市乐平市中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了已知等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=( )
A. B. C. D.
2.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是( )
A. B. C. D.
3.下列方程中有实数解的是( )
A.x4+16=0 B.x2﹣x+1=0
C. D.
4.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为4,则a的值是( )
A.4 B.3+ C.3 D.
5.已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sin∠AOB=.反比例函数y=在第一象限图象经过点A,与BC交于点F.S△AOF=,则k=( )
A.15 B.13 C.12 D.5
6.下列二次根式中,为最简二次根式的是( )
A. B. C. D.
7.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )
A.75° B.60° C.55° D.45°
8.若不等式组无解,那么m的取值范围是( )
A.m≤2 B.m≥2 C.m<2 D.m>2
9.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是( ).
A. B. C. D.
10.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为
A.60元 B.70元 C.80元 D.90元
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如果=k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.
12.如图,已知函数y=x+2的图象与函数y=(k≠0)的图象交于A、B两点,连接BO并延长交函数y=(k≠0)的图象于点C,连接AC,若△ABC的面积为1.则k的值为_____.
13.分解因式:__________.
14.对于实数,我们用符号表示两数中较小的数,如.因此, ________;若,则________.
15.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数为_______.
16.举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为 0,甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):
如果你是教练,要选派一名选手参加国际比赛,那么你会选择_____(填“甲” 或“乙”),理由是___________.
三、解答题(共8题,共72分)
17.(8分)如图,在△ABC中,D为BC边上一点,AC=DC,E为AB边的中点,
(1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);
(2)连接EF,若BD=4,求EF的长.
18.(8分)已知,抛物线的顶点为,它与轴交于点,(点在点左侧).
()求点、点的坐标;
()将这个抛物线的图象沿轴翻折,得到一个新抛物线,这个新抛物线与直线交于点.
①求证:点是这个新抛物线与直线的唯一交点;
②将新抛物线位于轴上方的部分记为,将图象以每秒个单位的速度向右平移,同时也将直线以每秒个单位的速度向上平移,记运动时间为,请直接写出图象与直线有公共点时运动时间的范围.
19.(8分)如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为米,斜坡BC的坡度i=1:.小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°.
(1)求坡角∠BCD;
(2)求旗杆AB的高度.
(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
20.(8分)计算:÷+8×2﹣1﹣(+1)0+2•sin60°.
21.(8分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.
收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:
排球
10
9.5
9.5
10
8
9
9.5
9
7
10
4
5.5
10
9.5
9.5
10
篮球
9.5
9
8.5
8.5
10
9.5
10
8
6
9.5
10
9.5
9
8.5
9.5
6
整理、描述数据:按如下分数段整理、描述这两组样本数据:
(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)
分析数据:两组样本数据的平均数、中位数、众数如下表所示:
项目
平均数
中位数
众数
排球
8.75
9.5
10
篮球
8.81
9.25
9.5
得出结论:
(1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;
(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.
你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)
22.(10分)在平面直角坐标系中,二次函数y=x2+ax+2a+1的图象经过点M(2,-3)。
(1)求二次函数的表达式;
(2)若一次函数y=kx+b(k≠0)的图象与二次函数y=x2+ax+2a+1的图象经过x轴上同一点,探究实数k,b满足的关系式;
(3)将二次函数y=x2+ax+2a+1的图象向右平移2个单位,若点P(x0,m)和Q(2,n)在平移后的图象上,且m>n,结合图象求x0的取值范围.
23.(12分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.
24.如图,在平行四边形ABCD中,BD为对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,连接AF、CE,求证:AF=CE.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
根据等腰三角形两底角相等用α表示出∠A2B2O,依此类推即可得到结论.
【详解】
∵B1A2=B1B2,∠A1B1O=α,
∴∠A2B2O=α,
同理∠A3B3O=×α=α,
∠A4B4O=α,
∴∠AnBnO=α,
∴∠A10B10O=,
故选B.
【点睛】
本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.
2、C
【解析】
试题解析:∵四边形ABCD是平行四边形,
故选C.
3、C
【解析】
A、B是一元二次方程可以根据其判别式判断其根的情况;C是无理方程,容易看出没有实数根;D是分式方程,能使得分子为零,分母不为零的就是方程的根.
【详解】
A.中△=02﹣4×1×16=﹣64<0,方程无实数根;
B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程无实数根;
C.x=﹣1是方程的根;
D.当x=1时,分母x2-1=0,无实数根.
故选:C.
【点睛】
本题考查了方程解得定义,能使方程左右两边相等的未知数的值叫做方程的解.解答本题的关键是针对不同的方程进行分类讨论.
4、B
【解析】
试题解析:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,
∵⊙P的圆心坐标是(3,a),
∴OC=3,PC=a,
把x=3代入y=x得y=3,
∴D点坐标为(3,3),
∴CD=3,
∴△OCD为等腰直角三角形,
∴△PED也为等腰直角三角形,
∵PE⊥AB,
∴AE=BE=AB=×4=2,
在Rt△PBE中,PB=3,
∴PE=,
∴PD=PE=,
∴a=3+.
故选B.
考点:1.垂径定理;2.一次函数图象上点的坐标特征;3.勾股定理.
5、A
【解析】
过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值.
【详解】
过点A作AM⊥x轴于点M,如图所示.
设OA=a=OB,则,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
∴AM=OA•sin∠AOB=a,OM=a,
∴点A的坐标为(a,a).
∵四边形OACB是菱形,S△AOF=,
∴OB×AM=,
即×a×a=39,
解得a=±,而a>0,
∴a=,即A(,6),
∵点A在反比例函数y=的图象上,
∴k=×6=1.
故选A.
【解答】
解:
【点评】
本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是利用S△AOF=S菱形OBCA.
6、B
【解析】
最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是( 整式 )(分母中不含根号)2.被开方数中不含能开提尽方的( 因数 )或( 因式 ).
【详解】
A. =3, 不是最简二次根式;
B. ,最简二次根式;
C. =,不是最简二次根式;
D. =,不是最简二次根式.
故选:B
【点睛】
本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.
7、B
【解析】
由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.
【详解】
解:∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,∠BAF=45°,
∵△ADE是等边三角形,
∴∠DAE=60°,AD=AE,
∴∠BAE=90°+60°=150°,AB=AE,
∴∠ABE=∠AEB=(180°﹣150°)=15°,
∴∠BFC=∠BAF+∠ABE=45°+15°=60°;
故选:B.
【点睛】
本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.
8、A
【解析】
先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m的取值范围.
【详解】
由①得,x<m,
由②得,x>1,
又因为不等式组无解,
所以m≤1.
故选A.
【点睛】
此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.
9、B
【解析】
试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P3P3的长,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等边三角形, ∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.
考点:3.线段垂直平分线性质;3.轴对称作图.
10、C
【解析】
设销售该商品每月所获总利润为w,
则w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,
∴当x=80时,w取得最大值,最大值为3600,
即售价为80元/件时,销售该商品所获利润最大,故选C.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、3
【解析】
∵=k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),
∵a+c+e=3(b+d+f),∴k=3,
故答案为:3.
12、3
【解析】
连接OA.根据反比例函数的对称性可得OB=OC,那么S△OAB=S△OAC=S△ABC=2.求出直线y=x+2与y轴交点D的坐标.设A(a,a+2),B(b,b+2),则C(-b,-b-2),根据S△OAB=2,得出a-b=2 ①.根据S△OAC=2,得出-a-b=2 ②,①与②联立,求出a、b的值,即可求解.
【详解】
如图,连接OA.
由题意,可得OB=OC,
∴S△OAB=S△OAC=S△ABC=2.
设直线y=x+2与y轴交于点D,则D(0,2),
设A(a,a+2),B(b,b+2),则C(-b,-b-2),
∴S△OAB=×2×(a-b)=2,
∴a-b=2 ①.
过A点作AM⊥x轴于点M,过C点作CN⊥x轴于点N,
则S△OAM=S△OCN=k,
∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,
∴(-b-2+a+2)(-b-a)=2,
将①代入,得
∴-a-b=2 ②,
①+②,得-2b=6,b=-3,
①-②,得2a=2,a=1,
∴A(1,3),
∴k=1×3=3.
故答案为3.
【点睛】
本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积,待定系数法求函数的解析式等知识,综合性较强,难度适中.根据反比例函数的对称性得出OB=OC是解题的突破口.
13、3(m-1)2
【解析】
试题分析:根据因式分解的方法,先提公因式,再根据完全平方公式分解因式即可,即3m2-6m+3=3(m2-2m+1)=3(m-1)2.
故答案为:3(m-1)2
点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解).
14、 2或-1.
【解析】
①∵--,
∴min{-,-}=-;
②∵min{(x−1)2,x2}=1,
∴当x>0.5时,(x−1)2=1,
∴x−1=±1,
∴x−1=1,x−1=−1,
解得:x1=2,x2=0(不合题意,舍去),
当x⩽0.5时,x2=1,
解得:x1=1(不合题意,舍去),x2=−1,
15、65°
【解析】
因为AB∥CD,所以∠BEF=180°-∠1=130°,因为EG平分∠BEF,所以∠BEG=65°,因为AB∥CD,所以∠2=∠BEG=65°.
16、乙 乙的比赛成绩比较稳定.
【解析】
观察表格中的数据可知:甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定;乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定,据此可得结论.
【详解】
观察表格中的数据可得,甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定; 乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定;
所以要选派一名选手参加国际比赛,应该选择乙,理由是乙的比赛成绩比较稳定.
故答案为乙,乙的比赛成绩比较稳定.
【点睛】
本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
三、解答题(共8题,共72分)
17、 (1)见解析;(1)1
【解析】
(1)根据角平分线的作图可得;
(1)由等腰三角形的三线合一,结合E为AB边的中点证EF为△ABD的中位线可得.
【详解】
(1)如图,射线CF即为所求;
(1)∵∠CAD=∠CDA,
∴AC=DC,即△CAD为等腰三角形;
又CF是顶角∠ACD的平分线,
∴CF是底边AD的中线,即F为AD的中点,
∵E是AB的中点,
∴EF为△ABD的中位线,
∴EF=BD=1.
【点睛】
本题主要考查作图-基本作图和等腰三角形的性质、中位线定理,熟练掌握等腰三角形的性质、中位线定理是解题的关键.
18、(1)B(-3,0),C(1,0);(2)①见解析;②≤t≤6.
【解析】
(1)根据抛物线的顶点坐标列方程,即可求得抛物线的解析式,令y=0,即可得解;
(2)①根据翻折的性质写出翻折后的抛物线的解析式,与直线方程联立,求得交点坐标即可;
②当t=0时,直线与抛物线只有一个交点N(3,-6)(相切),此时直线与G无交点;第一个交点出现时,直线过点C(1 +t,0),代入直线解析式:y=-4x+6+t,解得t=;最后一个交点是B(-3+t,0),代入y=-4x+6+t,解得t=6,所以≤t≤6.
【详解】
(1)因为抛物线的顶点为M(-1,-2),所以对称轴为x=-1,可得:,解得:a=,c=,所以抛物线解析式为y=x2+x,令y=0,解得x=1或x=-3,所以B(-3,0),C(1,0);
(2)①翻折后的解析式为y=-x2-x,与直线y=-4x+6联立可得:x2-3x+=0,解得:x1=x2=3,所以该一元二次方程只有一个根,所以点N(3,-6)是唯一的交点;
②≤t≤6.
【点睛】
本题主要考查了图形运动,解本题的要点在于熟知一元二次方程的相关知识点.
19、旗杆AB的高度为6.4米.
【解析】
分析:(1)根据坡度i与坡角α之间的关系为:i=tanα进行计算;
(2)根据余弦的概念求出CD,根据正切的概念求出AG、BG,计算即可.
本题解析:(1)∵斜坡BC的坡度i=1:,∴tan∠BCD= ,
∴∠BCD=30°;
(2)在Rt△BCD中,CD=BC×cos∠BCD=6×=9,
则DF=DC+CF=10(米),∵四边形GDFE为矩形,∴GE=DF=10(米),
∵∠AEG=45°,∴AG=DE=10(米),
在Rt△BEG中,BG=GE×tan∠BEG=10×0.36=3.6(米),
则AB=AG−BG=10−3.6=6.4(米).
答:旗杆AB的高度为6.4米。
20、6+.
【解析】
利用负整数指数幂、零指数幂的意义和特殊角的三角函数值进行计算.
【详解】
解:原式=+8×﹣1+2×=3+4﹣1+=6+.
【点睛】
本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
21、130 小明 平均数接近,而排球成绩的中位数和众数都较高.
【解析】
根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数;
根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论.
【详解】
解:补全表格成绩:
人数
项目
10
排球
1
1
2
7
5
篮球
0
2
1
10
3
达到优秀的人数约为(人);
故答案为130;
同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高答案不唯一,理由需支持判断结论
故答案为小明,平均数接近,而排球成绩的中位数和众数都较高.
【点睛】
本题考查众数、中位数,平均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体.
22、 (1)y=x2-2x-3;(2)k=b;(3)x0<2或x0>1.
【解析】
(1)将点M坐标代入y=x2+ax+2a+1,求出a的值,进而可得到二次函数表达式;(2)先求出抛物线与x轴的交点,将交点代入一次函数解析式,即可得到k,b满足的关系;(3)先求出平移后的新抛物线的解析式,确定新抛物线的对称轴以及Q的对称点Q′,根据m>n结合图像即可得到x0的取值范围.
【详解】
(1)把M(2,-3)代入y=x2+ax+2a+1,可以得到1+2a+2a+1=-3,a=-2,
因此,二次函数的表达式为:y=x2-2x-3;
(2)y=x2-2x-3与x轴的交点是:(3,0),(-1,0).
当y=kx+b(k≠0)经过(3,0)时,3k+b=0;
当y=kx+b(k≠0)经过(-1,0)时,k=b.
(3)将二次函数y=x2-2x-3的图象向右平移2个单位得到y=x2-6x+5,
对称轴是直线x=3,因此Q(2,n)在图象上的对称点是(1,n),
若点P(x0,m)使得m>n,结合图象可以得出x0<2或x0>1.
【点睛】
本题主要考查二次函数的图像和性质,熟练掌握这些知识点是解题的关键.
23、(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球2个,排球2个;方案①最省钱
【解析】
试题分析:(1)设篮球每个x元,排球每个y元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;
(2)不等关系为:购买足球和篮球的总费用不超过1元,列式求得解集后得到相应整数解,从而求解.
试题解析:解:(1)设篮球每个x元,排球每个y元,依题意,得:
解得.
答:篮球每个50元,排球每个30元.
(2)设购买篮球m个,则购买排球(20-m)个,依题意,得:
50m+30(20-m)≤1.
解得:m≤2.
又∵m≥8,∴8≤m≤2.
∵篮球的个数必须为整数,∴只能取8、9、2.
∴满足题意的方案有三种:①购买篮球8个,排球12个,费用为760元;②购买篮球9,排球11个,费用为780元;③购买篮球2个,排球2个,费用为1元.
以上三个方案中,方案①最省钱.
点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键.
24、见解析
【解析】
易证△ABE≌△CDF,得AE=CF,即可证得△AEF≌△CFE,即可得证.
【详解】
在平行四边形ABCD中,AB∥CD,AB=CD
∴∠ABE=∠CDF,
又AE⊥BD,CF⊥BD
∴△ABE≌△CDF(AAS),
∴AE=CF
又∠AEF=∠CFE,EF=FE,
∴△AEF≌△CFE(SAS)
∴AF=CE.
【点睛】
此题主要考查平行四边形的性质与全等三角形的判定与性质,解题的关键是熟知平行四边形的性质定理.
相关试卷
这是一份江西省上饶广丰区六校联考2022年中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了已知关于x的一元二次方程,如图,AB∥CD,那么,下列运算结果正确的是等内容,欢迎下载使用。
这是一份2022年湖北黄冈中考数学考试模拟冲刺卷含解析,共23页。试卷主要包含了答题时请按要求用笔,估计的值在等内容,欢迎下载使用。
这是一份2022届天津市中考数学考试模拟冲刺卷含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。