2022年辽宁省抚顺本溪铁岭辽阳葫芦岛市重点中学中考数学模拟预测试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.把不等式组的解集表示在数轴上,正确的是( )
A. B.
C. D.
2.下列生态环保标志中,是中心对称图形的是( )
A. B. C. D.
3.下列计算,结果等于a4的是( )
A.a+3a B.a5﹣a C.(a2)2 D.a8÷a2
4.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为( )
A. B. C. D.
5.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是( )
A.5 B.9 C.15 D.22
6.一元一次不等式组的解集中,整数解的个数是( )
A.4 B.5 C.6 D.7
7.这个数是( )
A.整数 B.分数 C.有理数 D.无理数
8.一次函数与二次函数在同一平面直角坐标系中的图像可能是( )
A. B. C. D.
9.如图的立体图形,从左面看可能是( )
A. B.
C. D.
10.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.在平面直角坐标系xOy中,将抛物线y=3(x+2)2-1平移后得到抛物线y=3x2+2 .请你写出一种平移方法. 答:________.
12.如图,在中,,, ,,,点在上,交于点,交于点,当时,________.
13.若一个等腰三角形的周长为26,一边长为6,则它的腰长为____.
14.如图AB是直径,C、D、E为圆周上的点,则______.
15.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为__________.
16.已知△ABC中,BC=4,AB=2AC,则△ABC面积的最大值为_______.
17.某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为_____元.
三、解答题(共7小题,满分69分)
18.(10分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.
(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.
(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.
19.(5分)如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)
20.(8分)2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化.某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图.请你根据图中提供的信息完成下列问题:
(1)求被调查学生的人数,并将条形统计图补充完整;
(2)求扇形统计图中的A等对应的扇形圆心角的度数;
(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?
21.(10分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)
22.(10分)已知.化简;如果、是方程的两个根,求的值.
23.(12分)如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m.当半圆D与数轴相切时,m= .半圆D与数轴有两个公共点,设另一个公共点是C.
①直接写出m的取值范围是 .
②当BC=2时,求△AOB与半圆D的公共部分的面积.当△AOB的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值.
24.(14分)(2016山东省烟台市)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:
(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?
(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.
【详解】
由①,得x≥2,
由②,得x<1,
所以不等式组的解集是:2≤x<1.
不等式组的解集在数轴上表示为:
.
故选A.
【点睛】
本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
2、B
【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.
故选B.
【考点】中心对称图形.
3、C
【解析】
根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.
【详解】
A.a+3a=4a,错误;
B.a5和a不是同类项,不能合并,故此选项错误;
C.(a2)2=a4,正确;
D.a8÷a2=a6,错误.
故选C.
【点睛】
本题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.
4、A
【解析】
试题解析:连接OE,OF,ON,OG,
在矩形ABCD中,
∵∠A=∠B=90°,CD=AB=4,
∵AD,AB,BC分别与⊙O相切于E,F,G三点,
∴∠AEO=∠AFO=∠OFB=∠BGO=90°,
∴四边形AFOE,FBGO是正方形,
∴AF=BF=AE=BG=2,
∴DE=3,
∵DM是⊙O的切线,
∴DN=DE=3,MN=MG,
∴CM=5-2-MN=3-MN,
在Rt△DMC中,DM2=CD2+CM2,
∴(3+NM)2=(3-NM)2+42,
∴NM=,
∴DM=3+=,
故选B.
考点:1.切线的性质;3.矩形的性质.
5、B
【解析】
条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
【详解】
课外书总人数:6÷25%=24(人),
看5册的人数:24﹣5﹣6﹣4=9(人),
故选B.
【点睛】
本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.
6、C
【解析】
试题分析:∵解不等式得:,解不等式,得:x≤5,∴不等式组的解集是,整数解为0,1,2,3,4,5,共6个,故选C.
考点:一元一次不等式组的整数解.
7、D
【解析】
由于圆周率π是一个无限不循环的小数,由此即可求解.
【详解】
解:实数π是一个无限不循环的小数.所以是无理数.
故选D.
【点睛】
本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.
8、D
【解析】
本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.
【详解】
A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;
B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;
C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;
D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.
故选D.
【点睛】
本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.
9、A
【解析】
根据三视图的性质即可解题.
【详解】
解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,
故选A.
【点睛】
本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.
10、A
【解析】
让黄球的个数除以球的总个数即为所求的概率.
【详解】
解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是.
故选:A.
【点睛】
本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.
二、填空题(共7小题,每小题3分,满分21分)
11、答案不唯一
【解析】
分析:把y改写成顶点式,进而解答即可.
详解:y先向右平移2个单位长度,再向上平移3个单位得到抛物线.
故答案为y先向右平移2个单位长度,再向上平移3个单位得到抛物线.
点睛:本题考查了二次函数图象与几何变换:先把二次函数的解析式配成顶点式为
y=a(x-)²+,然后把抛物线的平移问题转化为顶点的平移问题.
12、1
【解析】
如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,可得2x+1x=1,求出x即可解决问题.
【详解】
如图,作PQ⊥AB于Q,PR⊥BC于R.
∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ.
∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,∴2x+1x=1,∴x=,∴AP=5x=1.
故答案为:1.
【点睛】
本题考查了相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.
13、1
【解析】
题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.
【详解】
①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形;
②当6为底边时,则腰长=(26-6)÷2=1,因为6-6<1<6+6,所以能构成三角形;
故腰长为1.
故答案为:1.
【点睛】
此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.
14、90°
【解析】
连接OE,根据圆周角定理即可求出答案.
【详解】
解:连接OE,
根据圆周角定理可知:
∠C=∠AOE,∠D=∠BOE,
则∠C+∠D=(∠AOE+∠BOE)=90°,
故答案为:90°.
【点睛】
本题主要考查了圆周角定理,解题要掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
15、6
【解析】
利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的长.
【详解】
解:∵四边形ABCD为正方形,且边长为3,
∴AC=3,
∵AE平分∠CAD, ∴∠CAE=∠DAE,
∵AD∥CE, ∴∠DAE=∠E, ∴∠CAE=∠E, ∴CE=CA=3,
∵FA⊥AE,
∴∠FAC+∠CAE=90°,∠F+∠E=90°,
∴∠FAC=∠F, ∴CF=AC=3,
∴EF=CF+CE=3+3=6
16、
【解析】
设AC=x,则AB=2x,根据面积公式得S△ABC=2x ,由余弦定理求得 cosC代入化简S△ABC= ,由三角形三边关系求得 ,由二次函数的性质求得S△ABC取得最大值.
【详解】
设AC=x,则AB=2x,根据面积公式得:c= =2x.由余弦定理可得: ,
∴S△ABC=2x=2x=
由三角形三边关系有 ,解得,
故当时, 取得最大值,
故答案为: .
【点睛】
本题主要考查了余弦定理和面积公式在解三角形中的应用,考查了二次函数的性质,考查了计算能力,当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.
17、17
【解析】
根据饼状图求出25元所占比重为20%,再根据加权平均数求法即可解题.
【详解】
解:1-30%-50%=20%,
∴.
【点睛】
本题考查了加权平均数的计算方法,属于简单题,计算25元所占权比是解题关键.
三、解答题(共7小题,满分69分)
18、(1)证明见解析;(2);3.
【解析】
试题分析:(1)连接OD、OE、ED.先证明△AOE是等边三角形,得到AE=AO=0D,则四边形AODE是平行四边形,然后由OA=OD证明四边形AODE是菱形;
(2)连接OD、DF.先由△OBD∽△ABC,求出⊙O的半径,然后证明△ADC∽△AFD,得出AD2=AC•AF,进而求出AD.
试题解析:(1)证明:如图1,连接OD、OE、ED.
∵BC与⊙O相切于一点D,
∴OD⊥BC,
∴∠ODB=90°=∠C,
∴OD∥AC,
∵∠B=30°,
∴∠A=60°,
∵OA=OE,
∴△AOE是等边三角形,
∴AE=AO=0D,
∴四边形AODE是平行四边形,
∵OA=OD,
∴四边形AODE是菱形.
(2)解:设⊙O的半径为r.
∵OD∥AC,
∴△OBD∽△ABC.
∴,即8r=6(8﹣r).
解得r=,
∴⊙O的半径为.
如图2,连接OD、DF.
∵OD∥AC,
∴∠DAC=∠ADO,
∵OA=OD,
∴∠ADO=∠DAO,
∴∠DAC=∠DAO,
∵AF是⊙O的直径,
∴∠ADF=90°=∠C,
∴△ADC∽△AFD,
∴,
∴AD2=AC•AF,
∵AC=6,AF=,
∴AD2=×6=45,
∴AD==3.
点评:本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、菱形的判定和性质以及相似三角形的判定和性质,是一个综合题,难度中等.熟练掌握相关图形的性质及判定是解本题的关键.
考点:切线的性质;菱形的判定与性质;相似三角形的判定与性质.
19、DE的长度为6+1.
【解析】
根据相似三角形的判定与性质解答即可.
【详解】
解:过E作EF⊥BC,
∵∠CDE=120°,
∴∠EDF=60°,
设EF为x,DF=x,
∵∠B=∠EFC=90°,
∵∠ACB=∠ECD,
∴△ABC∽△EFC,
∴,
即,
解得:x=9+2,
∴DE==6+1,
答:DE的长度为6+1.
【点睛】
本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
20、(1)图见解析;(2)126°;(3)1.
【解析】
(1)利用被调查学生的人数=了解程度达到B等的学生数÷所占比例,即可得出被调查学生的人数,由了解程度达到C等占到的比例可求出了解程度达到C等的学生数,再利用了解程度达到A等的学生数=被调查学生的人数-了解程度达到B等的学生数-了解程度达到C等的学生数-了解程度达到D等的学生数可求出了解程度达到A等的学生数,依此数据即可将条形统计图补充完整;
(2)根据A等对应的扇形圆心角的度数=了解程度达到A等的学生数÷被调查学生的人数×360°,即可求出结论;
(3)利用该校现有学生数×了解程度达到A等的学生所占比例,即可得出结论.
【详解】
(1)48÷40%=120(人),
120×15%=18(人),
120-48-18-12=42(人).
将条形统计图补充完整,如图所示.
(2)42÷120×100%×360°=126°.
答:扇形统计图中的A等对应的扇形圆心角为126°.
(3)1500×=1(人).
答:该校学生对政策内容了解程度达到A等的学生有1人.
【点睛】
本题考查了条形统计图、扇形统计图以及用样本估计总体,观察条形统计图及扇形统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.
21、(70﹣10)m.
【解析】
过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解得到DF的长度;通过解得到CE的长度,则
【详解】
如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.
则DE=BF=CH=10m,
在中,∵AF=80m−10m=70m,
∴DF=AF=70m.
在中,∵DE=10m,
∴
∴
答:障碍物B,C两点间的距离为
22、 (1) ;(2)-4.
【解析】
(1)先通分,再进行同分母的减法运算,然后约分得到原式
(2)利用根与系数的关系得到 然后利用整体代入的方法计算.
【详解】
解:(1)
.
(2)∵、是方程,
∴,
∴
【点睛】
本题考查了根与系数的关系:若x1,x2是一元二次方程 的两根时,, 也考查了分式的加减法.
23、(1);(2)①;②△AOB与半圆D的公共部分的面积为;(3)tan∠AOB的值为或.
【解析】
(1)根据题意由勾股定理即可解答
(2)①根据题意可知半圆D与数轴相切时,只有一个公共点,和当O、A、B三点在数轴上时,求出两种情况m的值即可
②如图,连接DC,得出△BCD为等边三角形,可求出扇形ADC的面积,即可解答
(3)根据题意如图1,当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答
如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答
【详解】
(1)当半圆与数轴相切时,AB⊥OB,
由勾股定理得m= ,
故答案为 .
(2)①∵半圆D与数轴相切时,只有一个公共点,此时m=,
当O、A、B三点在数轴上时,m=7+4=11,
∴半圆D与数轴有两个公共点时,m的取值范围为.
故答案为.
②如图,连接DC,当BC=2时,
∵BC=CD=BD=2,
∴△BCD为等边三角形,
∴∠BDC=60°,
∴∠ADC=120°,
∴扇形ADC的面积为 ,
,
∴△AOB与半圆D的公共部分的面积为 ;
(3)如图1,
当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,则72﹣(4+x)2=42﹣x2,
解得x= ,OH= ,AH= ,
∴tan∠AOB=,
如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,
设BH=x,则72﹣(4﹣x)2=42﹣x2,
解得x= ,OH=,AH=,
∴tan∠AOB=.
综合以上,可得tan∠AOB的值为或.
【点睛】
此题此题考勾股定理,切线的性质,等边三角形的判定和性质,三角形的内心和外心,解题关键在于作辅助线
24、(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元.
【解析】
(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元可列方程18x+12(20﹣x)=300,解方程即可;
(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.
【详解】
(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,
根据题意得:18x+12(20﹣x)=300,
解得:x=10,
则20﹣x=20﹣10=10,
则甲、乙两种型号的产品分别为10万只,10万只;
(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,
根据题意得:13y+8.8(20﹣y)≤239,
解得:y≤15,
根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,
当y=15时,W最大,最大值为91万元.
所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.
考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.
辽宁省抚顺本溪铁岭辽阳葫芦岛市2023-2024学年八年级数学第一学期期末经典模拟试题【含解析】: 这是一份辽宁省抚顺本溪铁岭辽阳葫芦岛市2023-2024学年八年级数学第一学期期末经典模拟试题【含解析】,共19页。
辽宁省抚顺本溪铁岭辽阳葫芦岛市2023-2024学年八年级数学第一学期期末经典模拟试题【含解析】: 这是一份辽宁省抚顺本溪铁岭辽阳葫芦岛市2023-2024学年八年级数学第一学期期末经典模拟试题【含解析】,共19页。试卷主要包含了答题时请按要求用笔,9的平方根是等内容,欢迎下载使用。
辽宁省抚顺本溪铁岭辽阳葫芦岛市2023-2024学年八年级数学第一学期期末检测模拟试题【含解析】: 这是一份辽宁省抚顺本溪铁岭辽阳葫芦岛市2023-2024学年八年级数学第一学期期末检测模拟试题【含解析】,共22页。