![2022年江苏省无锡市刘潭实验学校中考试题猜想数学试卷含解析第1页](http://www.enxinlong.com/img-preview/2/3/13069641/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年江苏省无锡市刘潭实验学校中考试题猜想数学试卷含解析第2页](http://www.enxinlong.com/img-preview/2/3/13069641/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年江苏省无锡市刘潭实验学校中考试题猜想数学试卷含解析第3页](http://www.enxinlong.com/img-preview/2/3/13069641/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022年江苏省无锡市刘潭实验学校中考试题猜想数学试卷含解析
展开这是一份2022年江苏省无锡市刘潭实验学校中考试题猜想数学试卷含解析,共21页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,取一张长为、宽为的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边应满足的条件是( )
A. B. C. D.
2.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是
A.55° B.60° C.65° D.70°
3.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是( )
A.PD B.PB C.PE D.PC
4.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为()
A.30 B.27 C.14 D.32
5.等腰三角形一边长等于5,一边长等于10,它的周长是( )
A.20 B.25 C.20或25 D.15
6.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )
A.CB=CD B.∠BCA=∠DCA
C.∠BAC=∠DAC D.∠B=∠D=90°
7.下列计算正确的是( )
A.()2=±8 B.+=6 C.(﹣)0=0 D.(x﹣2y)﹣3=
8.若一个多边形的内角和为360°,则这个多边形的边数是( )
A.3 B.4 C.5 D.6
9.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )
A.3a+2b B.3a+4b C.6a+2b D.6a+4b
10.如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是( )
A.点M B.点N C.点P D.点Q
11.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是( )
A. B. C. D.
12.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图是我区某一天内的气温变化图,结合该图给出的信息写出一个正确的结论:________.
14.如图,点是反比例函数图像上的两点(点在点左侧),过点作轴于点,交于点,延长交轴于点,已知,,则的值为__________.
15.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是 .
16.计算5个数据的方差时,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],则的值为_____.
17.如果正比例函数y=(k-2)x的函数值y随x的增大而减小,且它的图象与反比例函数y=的图象没有公共点,那么k的取值范围是______.
18.图中是两个全等的正五边形,则∠α=______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B 坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.求该反比例函数和一次函数的解析式;求△AOB的面积;点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.
20.(6分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.求证:∠CBP=∠ADB.若OA=2,AB=1,求线段BP的长.
21.(6分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D求证:AC∥DE;若BF=13,EC=5,求BC的长.
22.(8分)如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.
(1)求点M到AB的距离;(结果保留根号)
(2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)
(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)
23.(8分)如图,一棵大树在一次强台风中折断倒下,未折断树杆与地面仍保持垂直的关系,而折断部分与未折断树杆形成的夹角.树杆旁有一座与地面垂直的铁塔,测得米,塔高米.在某一时刻的太阳照射下,未折断树杆落在地面的影子长为米,且点、、、在同一条直线上,点、、也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到,参考数据:,,).
24.(10分)计算
25.(10分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?
26.(12分)发现
如图1,在有一个“凹角∠A1A2A3”n边形A1A2A3A4……An中(n为大于3的整数),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.
验证如图2,在有一个“凹角∠ABC”的四边形ABCD中,证明:∠ABC=∠A+∠C+∠D.证明3,在有一个“凹角∠ABC”的六边形ABCDEF中,证明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.
延伸如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……An中(n为大于4的整数),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣ )×180°.
27.(12分)为响应“植树造林、造福后人”的号召,某班组织部分同学义务植树棵,由于同学们的积极参与,实际参加的人数比原计划增加了,结果每人比原计划少栽了棵,问实际有多少人参加了这次植树活动?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,然后根据相似多边形的定义,列出比例式即可求出结论.
【详解】
解:由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,
∵小长方形与原长方形相似,
故选B.
【点睛】
此题考查的是相似三角形的性质,根据相似三角形的定义列比例式是解决此题的关键.
2、C
【解析】
根据旋转的性质和三角形内角和解答即可.
【详解】
∵将△ABC绕点C顺时针旋转90°得到△EDC.
∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,
∴∠ACD=90°-20°=70°,
∵点A,D,E在同一条直线上,
∴∠ADC+∠EDC=180°,
∵∠EDC+∠E+∠DCE=180°,
∴∠ADC=∠E+20°,
∵∠ACE=90°,AC=CE
∴∠DAC+∠E=90°,∠E=∠DAC=45°
在△ADC中,∠ADC+∠DAC+∠DCA=180°,
即45°+70°+∠ADC=180°,
解得:∠ADC=65°,
故选C.
【点睛】
此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.
3、C
【解析】
观察可得,点P在线段AC上由A到C的运动中,线段PE逐渐变短,当EP⊥AC时,PE最短,过垂直这个点后,PE又逐渐变长,当AP=m时,点P停止运动,符合图像的只有线段PE,故选C.
点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.
4、A
【解析】
∵四边形ABCD是平行四边形,
∴AB//CD,AB=CD,AD//BC,
∴△BEF∽△CDF,△BEF∽△AED,
∴ ,
∵BE:AB=2:3,AE=AB+BE,
∴BE:CD=2:3,BE:AE=2:5,
∴ ,
∵S△BEF=4,
∴S△CDF=9,S△AED=25,
∴S四边形ABFD=S△AED-S△BEF=25-4=21,
∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,
故选A.
【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.
5、B
【解析】
题目中没有明确腰和底,故要分情况讨论,再结合三角形的三边关系分析即可.
【详解】
当5为腰时,三边长为5、5、10,而,此时无法构成三角形;
当5为底时,三边长为5、10、10,此时可以构成三角形,它的周长
故选B.
6、B
【解析】
由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可.
【详解】
解:在△ABC和△ADC中
∵AB=AD,AC=AC,
∴当CB=CD时,满足SSS,可证明△ABC≌△ACD,故A可以;
当∠BCA=∠DCA时,满足SSA,不能证明△ABC≌△ACD,故B不可以;
当∠BAC=∠DAC时,满足SAS,可证明△ABC≌△ACD,故C可以;
当∠B=∠D=90°时,满足HL,可证明△ABC≌△ACD,故D可以;
故选:B.
【点睛】
本题考查了全等三角形的判定方法,熟练掌握判定定理是解题关键.
7、D
【解析】
各项中每项计算得到结果,即可作出判断.
【详解】
解:A.原式=8,错误;
B.原式=2+4,错误;
C.原式=1,错误;
D.原式=x6y﹣3= ,正确.
故选D.
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
8、B
【解析】
利用多边形的内角和公式求出n即可.
【详解】
由题意得:(n-2)×180°=360°,
解得n=4;
故答案为:B.
【点睛】
本题考查多边形的内角和,解题关键在于熟练掌握公式.
9、A
【解析】
根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.
【详解】
依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.
故这块矩形较长的边长为3a+2b.故选A.
【点睛】
本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键.
10、D
【解析】
∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,
∴原点在点M与N之间,
∴这四个数中绝对值最大的数对应的点是点Q.
故选D.
11、A
【解析】试题分析:几何体的主视图有2列,每列小正方形数目分别为2,1.
故选A.
考点:三视图
视频
12、B
【解析】
由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
∵a<0,
∴抛物线的开口方向向下,
故第三个选项错误;
∵c<0,
∴抛物线与y轴的交点为在y轴的负半轴上,
故第一个选项错误;
∵a<0、b>0,对称轴为x=>0,
∴对称轴在y轴右侧,
故第四个选项错误.
故选B.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、这一天的最高气温约是26°
【解析】
根据我区某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.
【详解】
解:根据图象可得这一天的最高气温约是26°,
故答案为:这一天的最高气温约是26°.
【点睛】
本题考查的是函数图象问题,统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
14、
【解析】
过点B作BF⊥OC于点F,易证S△OAE=S四边形DEBF=,S△OAB=S四边形DABF,因为,所以,,又因为AD∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因为S△OAD=S△OBF,所以×OD×AD =×OF×BF,即BF:AD=2:5= OD:OF,易证:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21,所以S△OED= ,S△OBF= S△OED+ S四边形EDFB=+=, 即可得解:k=2 S△OBF=.
【详解】
解:过点B作BF⊥OC于点F,
由反比例函数的比例系数|k|的意义可知:S△OAD=S△OBF,
∴S△OAD- S△OED =S△OBF一S△OED,即S△OAE=S四边形DEBF=,S△OA B=S四边形DABF,
∵,
∴,,
∵AD∥BF
∴S△BCF∽S△ACD,
又∵,
∴BF:AD=2:5,
∵S△OAD=S△OBF,
∴×OD×AD =×OF×BF
∴BF:AD=2:5= OD:OF
易证:S△OED∽S△OBF,
∴S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21
∵S四边形EDFB=,
∴S△OED= ,S△OBF= S△OED+ S四边形EDFB=+=,
∴k=2 S△OBF=.
故答案为.
【点睛】
本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理.
15、1
【解析】
∵四边形ABCD为正方形,
∴∠D=∠ABC=90°,AD=AB,
∴∠ABE=∠D=90°,
∵∠EAF=90°,
∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,
∴∠DAF=∠BAE,
∴△AEB≌△AFD,
∴S△AEB=S△AFD,
∴它们都加上四边形ABCF的面积,
可得到四边形AECF的面积=正方形的面积=1.
16、1
【解析】
根据平均数的定义计算即可.
【详解】
解:
故答案为1.
【点睛】
本题主要考查平均数的求法,掌握平均数的公式是解题的关键.
17、
【解析】
先根据正比例函数y=(k-1)x的函数值y随x的增大而减小,可知k-1<0;再根据它的图象与反比例函数y=的图象没有公共点,说明反比例函数y=
的图象经过一、三象限,k>0,从而可以求出k的取值范围.
【详解】
∵y=(k-1)x的函数值y随x的增大而减小,
∴k-1<0
∴k<1
而y=(k-1)x的图象与反比例函数y=
的图象没有公共点,
∴k>0
综合以上可知:0<k<1.
故答案为0<k<1.
【点睛】
本题考查的是一次函数与反比例函数的相关性质,清楚掌握函数中的k的意义是解决本题的关键.
18、108°
【解析】
先求出正五边形各个内角的度数,再求出∠BCD和∠BDC的度数,求出∠CBD,即可求出答案.
【详解】
如图:
∵图中是两个全等的正五边形,
∴BC=BD,
∴∠BCD=∠BDC,
∵图中是两个全等的正五边形,
∴正五边形每个内角的度数是=108°,
∴∠BCD=∠BDC=180°-108°=72°,
∴∠CBD=180°-72°-72°=36°,
∴∠α=360°-36°-108°-108°=108°,
故答案为108°.
【点睛】
本题考查了正多边形和多边形的内角和外角,能求出各个角的度数是解此题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)y=﹣,y=﹣x+2;(2)6;(3)当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.
【解析】
(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;
(2)利用一次函数解析式求得C(4,0),即OC=4,即可得出△AOB的面积=×4×3=6;
(3)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可.
【详解】
(1)如图,在Rt△OAD中,∠ADO=90°,
∵tan∠AOD=,AD=3,
∴OD=2,
∴A(﹣2,3),
把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,
所以反比例函数解析式为:y=﹣,
把B(m,﹣1)代入y=﹣,得:m=6,
把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,
解得:,
所以一次函数解析式为:y=﹣x+2;
(2)当y=0时,﹣ x+2=0,
解得:x=4,
则C(4,0),
所以;
(3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);
当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);
当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1,1.5),
令y=0,得到y=﹣,即E4(﹣,0),
综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.
【点睛】
本题考查了反比例函数与一次函数的交点问题,熟练掌握各自的性质是解题的关键.
20、(1)证明见解析;(2)BP=1.
【解析】
分析:(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;
(2)证明△AOP∽△ABD,然后利用相似比求BP的长.
详(1)证明:连接OB,如图,
∵AD是⊙O的直径,
∴∠ABD=90°,
∴∠A+∠ADB=90°,
∵BC为切线,
∴OB⊥BC,
∴∠OBC=90°,
∴∠OBA+∠CBP=90°,
而OA=OB,
∴∠A=∠OBA,
∴∠CBP=∠ADB;
(2)解:∵OP⊥AD,
∴∠POA=90°,
∴∠P+∠A=90°,
∴∠P=∠D,
∴△AOP∽△ABD,
∴,即,
∴BP=1.
点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和相似三角形的判定与性质.
21、(1)证明见解析;(2)4.
【解析】
(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.
【详解】
解:(1)在△ABC和△DFE中
,
∴△ABC≌△DFE(SAS),
∴∠ACE=∠DEF,
∴AC∥DE;
(2)∵△ABC≌△DFE,
∴BC=EF,
∴CB﹣EC=EF﹣EC,
∴EB=CF,
∵BF=13,EC=5,
∴EB=4,
∴CB=4+5=1.
【点睛】
考点:全等三角形的判定与性质.
22、 (1) ; (2)95m.
【解析】
(1)过点M作MD⊥AB于点D,易求AD的长,再由BD=MD可得BD的长,即M到AB的距离;
(2)过点N作NE⊥AB于点E,易证四边形MDEN为平行四边形,所以ME的长可求出,再根据MN=AB-AD-BE计算即可.
【详解】
解:(1)过点M作MD⊥AB于点D,
∵MD⊥AB,
∴∠MDA=∠MDB=90°,
∵∠MAB=60°,∠MBA=45°,
∴在Rt△ADM中,;
在Rt△BDM中,,
∴BD=MD=,
∵AB=600m,
∴AD+BD=600m,
∴AD+,
∴AD=(300)m,
∴BD=MD=(900-300),
∴点M到AB的距离(900-300).
(2)过点N作NE⊥AB于点E,
∵MD⊥AB,NE⊥AB,
∴MD∥NE,
∵AB∥MN,
∴四边形MDEN为平行四边形,
∴NE=MD=(900-300),MN=DE,
∵∠NBA=53°,
∴在Rt△NEB中,,
∴BEm,
∴MN=AB-AD-BE.
【点睛】
考查了解直角三角形的应用,通过解直角三角形能解决实际问题中的很多有关测量问题,根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案是解题的关键.
23、米.
【解析】
试题分析:要求这棵大树没有折断前的高度,只要求出AB和AC的长度即可,根据题目中的条件可以求得AB和AC的长度,即可得到结论.
试题解析:解:∵AB⊥EF,DE⊥EF,∴∠ABC=90°,AB∥DE,∴△FAB∽△FDE,∴ ,∵FB=4米,BE=6米,DE=9米,∴,得AB=3.6米,∵∠ABC=90°,∠BAC=53°,cos∠BAC=,∴AC= ==6米,∴AB+AC=3.6+6=9.6米,即这棵大树没有折断前的高度是9.6米.
点睛:本题考查直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答.
24、
【解析】
先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解后约分即可.
【详解】
原式=,
=,
=,
=.
【点睛】
本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.
25、官有200人,兵有800人
【解析】
设官有x人,兵有y人,根据1000官兵正好分1000匹布,即可得出关于x,y的二元一次方程组,解之即可得出结论.
【详解】
解:设官有x人,兵有y人,
依题意,得:
,
解得: .
答:官有200人,兵有800人.
【点睛】
本题主要考查二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.
26、(1)见解析;(2)见解析;(3)1.
【解析】
(1)如图2,延长AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答
(2)如图3,延长AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答
(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出规律即可解答
【详解】
(1)如图2,延长AB交CD于E,
则∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,
∴∠ABC=∠A+∠C+∠D;
(2)如图3,延长AB交CD于G,则∠ABC=∠BGC+∠C,
∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),
∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;
(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,
则∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,
∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),
而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],
∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.
故答案为1.
【点睛】
此题考查多边形的内角和外角,,解题的关键是熟练掌握三角形的外角的性质,属于中考常考题型
27、人
【解析】
解:设原计划有x人参加了这次植树活动
依题意得:
解得 x=30人
经检验x=30是原方程式的根
实际参加了这次植树活动1.5x=45人
答实际有45人参加了这次植树活动.
相关试卷
这是一份2023-2024学年江苏省无锡市刘潭实验学校数学八年级第一学期期末检测试题含答案,共6页。试卷主要包含了若点A,如图,已知,,则的度数是,下列线段长能构成三角形的是,若点和点关于轴对称,则点在,在中,的外角等于,的度数是等内容,欢迎下载使用。
这是一份江苏省无锡市刘潭实验学校2022-2023学年数学七下期末统考试题含答案,共8页。试卷主要包含了下列各式正确的是等内容,欢迎下载使用。
这是一份江苏省无锡市刘潭实验学校2022年十校联考最后数学试题含解析,共21页。