|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年江西省萍乡市莲花县初中数学毕业考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    2022年江西省萍乡市莲花县初中数学毕业考试模拟冲刺卷含解析01
    2022年江西省萍乡市莲花县初中数学毕业考试模拟冲刺卷含解析02
    2022年江西省萍乡市莲花县初中数学毕业考试模拟冲刺卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江西省萍乡市莲花县初中数学毕业考试模拟冲刺卷含解析

    展开
    这是一份2022年江西省萍乡市莲花县初中数学毕业考试模拟冲刺卷含解析,共24页。试卷主要包含了答题时请按要求用笔,如图,点A所表示的数的绝对值是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为(  )
    A.55×105 B.5.5×104 C.0.55×105 D.5.5×105
    2.现有两根木棒,它们的长分别是20cm和30cm,若不改变木棒的长短,要钉成一个三角形木架,则应在下列四根木棒中选取( )
    A.10cm的木棒 B.40cm的木棒 C.50cm的木棒 D.60cm的木棒
    3.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是(  )
    用水量x(吨)
    3
    4
    5
    6
    7
    频数
    1
    2
    5
    4﹣x
    x
    A.平均数、中位数 B.众数、中位数 C.平均数、方差 D.众数、方差
    4.把图中的五角星图案,绕着它的中心点O进行旋转,若旋转后与自身重合,则至少旋转(  )

    A.36° B.45° C.72° D.90°
    5.下列命题中错误的有(  )个
    (1)等腰三角形的两个底角相等 
    (2)对角线相等且互相垂直的四边形是正方形
    (3)对角线相等的四边形为矩形 
    (4)圆的切线垂直于半径
    (5)平分弦的直径垂直于弦
    A.1 B.2 C.3 D.4
    6.如图,点A所表示的数的绝对值是(  )

    A.3 B.﹣3 C. D.
    7.若关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在0和1之间(不含0和1),则a的取值范围是( )
    A.a<3 B.a>3 C.a<﹣3 D.a>﹣3
    8.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )
    A. B. C. D.
    9.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为(  )

    A.1 B.3 C.5 D.1或5
    10.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为(  )元.
    A.+4 B.﹣9 C.﹣4 D.+9
    11.一元二次方程3x2-6x+4=0根的情况是
    A.有两个不相等的实数根 B.有两个相等的实数根 C.有两个实数根 D.没有实数根
    12.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y=图象上的概率是(  )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.Rt△ABC的边AB=5,AC=4,BC=3,矩形DEFG的四个顶点都在Rt△ABC的边上,当矩形DEFG的面积最大时,其对角线的长为_______.
    14.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是_____.

    15.一个不透明的袋子中装有三个小球,它们除分别标有的数字 1,3,5 不同外,其他完全相同.从袋子中任意摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之 和为8的概率是__________.
    16.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为__________.

    17.阅读以下作图过程:
    第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆(如图);
    第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);
    第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.
    请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为______.

    18.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E= .

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)作图题:在∠ABC内找一点P,使它到∠ABC的两边的距离相等,并且到点A、C的距离也相等.(写出作法,保留作图痕迹)

    20.(6分)如图,四边形AOBC是正方形,点C的坐标是(4,0).正方形AOBC的边长为   ,点A的坐标是   .将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).

    21.(6分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.
    22.(8分)如图,在平面直角坐标系中,A为y轴正半轴上一点,过点A作x轴的平行线,交函数的图象于B点,交函数的图象于C,过C作y轴和平行线交BO的延长线于D.
    (1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;
    (2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;
    (3)在(1)条件下,四边形AODC的面积为多少?

    23.(8分)综合与探究:
    如图,已知在△ABC 中,AB=AC,∠BAC=90°,点 A 在 x 轴上,点 B 在 y 轴上,点在二次函数的图像上.
    (1)求二次函数的表达式;
    (2)求点 A,B 的坐标;
    (3)把△ABC 沿 x 轴正方向平移, 当点 B 落在抛物线上时, 求△ABC 扫过区域的面积.

    24.(10分)探究:
    在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手   次:;若参加聚会的人数为5,则共握手   次;若参加聚会的人数为n(n为正整数),则共握手   次;若参加聚会的人共握手28次,请求出参加聚会的人数.
    拓展:
    嘉嘉给琪琪出题:
    “若线段AB上共有m个点(含端点A,B),线段总数为30,求m的值.”
    琪琪的思考:“在这个问题上,线段总数不可能为30”
    琪琪的思考对吗?为什么?
    25.(10分)在平面直角坐标系xOy中,点C是二次函数y=mx2+4mx+4m+1的图象的顶点,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.
    (1)请你求出点A、B、C的坐标;
    (2)若二次函数y=mx2+4mx+4m+1与线段AB恰有一个公共点,求m的取值范围.

    26.(12分)如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不放回.甲、乙约定:只有甲抽到的牌面数字比乙大时甲胜;否则乙胜.请你用树状图或列表法说明甲、乙获胜的机会是否相同 .

    27.(12分)实践体验:
    (1)如图1:四边形ABCD是矩形,试在AD边上找一点P,使△BCP为等腰三角形;
    (2)如图2:矩形ABCD中,AB=13,AD=12,点E在AB边上,BE=3,点P是矩形ABCD内或边上一点,且PE=5,点Q是CD边上一点,求PQ得最值;
    问题解决:
    (3)如图3,四边形ABCD中,AD∥BC,∠C=90°,AD=3,BC=6,DC=4,点E在AB边上,BE=2,点P是四边形ABCD内或边上一点,且PE=2,求四边形PADC面积的最值.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    将度55000用科学记数法表示为5.5×1.
    故选B.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    2、B
    【解析】
    设应选取的木棒长为x,再根据三角形的三边关系求出x的取值范围.进而可得出结论.
    【详解】
    设应选取的木棒长为x,则30cm-20cm<x<30cm+20cm,即10cm<x<50cm.
    故选B.
    【点睛】
    本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.
    3、B
    【解析】
    由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第6、7个数据的平均数,可得答案.
    【详解】
    ∵6吨和7吨的频数之和为4-x+x=4,
    ∴频数之和为1+2+5+4=12,
    则这组数据的中位数为第6、7个数据的平均数,即=5,
    ∴对于不同的正整数x,中位数不会发生改变,
    ∵后两组频数和等于4,小于5,
    ∴对于不同的正整数x,众数不会发生改变,众数依然是5吨.
    故选B.
    【点睛】
    本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数的定义和计算方法是解题的关键.
    4、C
    【解析】
    分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360°即可求出最小的旋转角度.
    详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:360°÷5=72°.
    故选C.
    点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.
    5、D
    【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可.
    详解:等腰三角形的两个底角相等,(1)正确;
    对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误;
    对角线相等的平行四边形为矩形,(3)错误;
    圆的切线垂直于过切点的半径,(4)错误;
    平分弦(不是直径)的直径垂直于弦,(5)错误.
    故选D.
    点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
    6、A
    【解析】
    根据负数的绝对值是其相反数解答即可.
    【详解】
    |-3|=3,
    故选A.
    【点睛】
    此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答.
    7、B
    【解析】
    试题分析:当x=0时,y=-5;当x=1时,y=a-1,函数与x轴在0和1之间有一个交点,则a-1>0,解得:a>1.
    考点:一元二次方程与函数
    8、B
    【解析】
    试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是.
    故选B.
    考点:概率.
    9、D
    【解析】
    分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.
    【详解】
    当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,
    当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,
    故选D.
    【点睛】
    本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.
    10、B
    【解析】
    收入和支出是两个相反的概念,故两个数字分别为正数和负数.
    【详解】
    收入13元记为+13元,那么支出9元记作-9元
    【点睛】
    本题主要考查了正负数的运用,熟练掌握正负数的概念是本题的关键.
    11、D
    【解析】
    根据∆=b2-4ac,求出∆的值,然后根据∆的值与一元二次方程根的关系判断即可.
    【详解】
    ∵a=3,b=-6,c=4,
    ∴∆=b2-4ac=(-6)2-4×3×4=-12<0,
    ∴方程3x2-6x+4=0没有实数根.
    故选D.
    【点睛】
    本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
    12、B
    【解析】
    首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(m,n)恰好在反比例函数y=图象上的情况,再利用概率公式即可求得答案.
    【详解】
    解:画树状图得:

    ∵共有12种等可能的结果,点(m,n)恰好在反比例函数y=图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),
    ∴点(m,n)在函数y=图象上的概率是:.
    故选B.
    【点睛】
    此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、或
    【解析】
    分两种情形画出图形分别求解即可解决问题
    【详解】
    情况1:如图1中,四边形DEFG是△ABC的内接矩形,设DE=CF=x,则BF=3-x
    ∵EF∥AC,
    ∴=
    ∴=
    ∴EF=(3-x)
    ∴S矩形DEFG=x•(3-x)=﹣(x-)2+3
    ∴x=时,矩形的面积最大,最大值为3,此时对角线=.
    情况2:如图2中,四边形DEFG是△ABC的内接矩形,设DE=GF=x,

    作CH⊥AB于H,交DG于T.则CH=,CT=﹣x,
    ∵DG∥AB,
    ∴△CDG∽△CAB,


    ∴DG=5﹣x,
    ∴S矩形DEFG=x(5﹣x)=﹣(x﹣)2+3,
    ∴x=时,矩形的面积最大为3,此时对角线==
    ∴矩形面积的最大值为3,此时对角线的长为或
    故答案为或
    【点睛】
    本题考查相似三角形的应用、矩形的性质、二次函数的最值等知识,解题的关键是学会用分类讨论的思想思考问题
    14、
    【解析】
    【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.
    【详解】直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),
    以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,
    OA2==4,点A2的坐标为(4,0),
    这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)
    以此类推便可求出点A2019的坐标为(22019,0),
    则的长是,
    故答案为:.
    【点睛】本题主要考查了一次函数图象上点的坐标特征,弧长的计算,解题的关键找出点的坐标的变化规律、运用数形结合思想进行解题.
    15、
    【解析】
    根据题意列出表格或树状图即可解答.
    【详解】
    解:根据题意画出树状图如下:

    总共有9种情况,其中两个数字之和为8的有2种情况,
    ∴,
    故答案为:.
    【点睛】
    本题考查了概率的求解,解题的关键是画出树状图或列出表格,并熟记概率的计算公式.
    16、4.1
    【解析】
    解:如图所示:∵四边形ABCD是矩形,
    ∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,
    根据题意得:△ABP≌△EBP,
    ∴EP=AP,∠E=∠A=90°,BE=AB=1,
    在△ODP和△OEG中,

    ∴△ODP≌△OEG(ASA),
    ∴OP=OG,PD=GE,
    ∴DG=EP,
    设AP=EP=x,则PD=GE=6﹣x,DG=x,
    ∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,
    根据勾股定理得:BC2+CG2=BG2,
    即62+(1﹣x)2=(x+2)2,
    解得:x=4.1,
    ∴AP=4.1;
    故答案为4.1.

    17、作图见解析,
    【解析】
    解:如图,点M即为所求.连接AC、BC.由题意知:AB=4,BC=1.∵AB为圆的直径,∴∠ACB=90°,则AM=AC===,∴点M表示的数为.故答案为.

    点睛:本题主要考查作图﹣尺规作图,解题的关键是熟练掌握尺规作图和圆周角定理及勾股定理.
    18、50°.
    【解析】
    解:连接DF,连接AF交CE于G,

    ∵EF为⊙O的切线,
    ∴∠OFE=90°,
    ∵AB为直径,H为CD的中点
    ∴AB⊥CD,即∠BHE=90°,
    ∵∠ACF=65°,
    ∴∠AOF=130°,
    ∴∠E=360°-∠BHE-∠OFE-∠AOF=50°,
    故答案为:50°.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、见解析
    【解析】
    先作出∠ABC的角平分线,再连接AC,作出AC的垂直平分线,两条平分线的交点即为所求点.
    【详解】
    ①以B为圆心,以任意长为半径画弧,分别交BC、AB于D、E两点;
    ②分别以D、E为圆心,以大于DE为半径画圆,两圆相交于F点;
    ③连接AF,则直线AF即为∠ABC的角平分线;
    ⑤连接AC,分别以A、C为圆心,以大于AC为半径画圆,两圆相交于F、H两点;
    ⑥连接FH交BF于点M,则M点即为所求.

    【点睛】
    本题考查的是角平分线及线段垂直平分线的作法,熟练掌握是解题的关键.
    20、(1)4,;(2)旋转后的正方形与原正方形的重叠部分的面积为;(3).
    【解析】
    (1)连接AB,根据△OCA为等腰三角形可得AD=OD的长,从而得出点A的坐标,则得出正方形AOBC的面积;
    (2)根据旋转的性质可得OA′的长,从而得出A′C,A′E,再求出面积即可;
    (3)根据P、Q点在不同的线段上运动情况,可分为三种列式①当点P、Q分别在OA、OB时,②当点P在OA上,点Q在BC上时,③当点P、Q在AC上时,可方程得出t.
    【详解】
    解:(1)连接AB,与OC交于点D,
    四边形是正方形,
    ∴△OCA为等腰Rt△,
    ∴AD=OD=OC=2,
    ∴点A的坐标为.

    4,.
    (2)如图
    ∵ 四边形是正方形,
    ∴,.
    ∵ 将正方形绕点顺时针旋转,
    ∴ 点落在轴上.
    ∴.
    ∴ 点的坐标为.
    ∵,
    ∴.
    ∵ 四边形,是正方形,
    ∴,.
    ∴,.
    ∴.
    ∴.
    ∵,

    ∴ .
    ∴旋转后的正方形与原正方形的重叠部分的面积为.
    (3)设t秒后两点相遇,3t=16,∴t=
    ①当点P、Q分别在OA、OB时,
    ∵,OP=t,OQ=2t
    ∴不能为等腰三角形
    ②当点P在OA上,点Q在BC上时如图2,

    当OQ=QP,QM为OP的垂直平分线,
    OP=2OM=2BQ,OP=t,BQ=2t-4,
    t=2(2t-4),
    解得:t=.
    ③当点P、Q在AC上时,
    不能为等腰三角形
    综上所述,当时是等腰三角形
    【点睛】
    此题考查了正方形的性质,等腰三角形的判定以及旋转的性质,是中考压轴题,综合性较强,难度较大.
    21、.
    【解析】
    试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章,再利用概率公式求解即可求得答案.
    试题解析:解:如图:
    所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=.

    点睛:本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
    22、(1)线段AB与线段CA的长度之比为;(2)线段AB与线段CA的长度之比为;(3)1.
    【解析】
    试题分析:
    (1)由题意把y=2代入两个反比例函数的解析式即可求得点B、C的横坐标,从而得到AB、AC的长,即可得到线段AB与AC的比值;
    (2)由题意把y=a代入两个反比例函数的解析式即可求得用“a”表示的点B、C的横坐标,从而可得到AB、AC的长,即可得到线段AB与AC的比值;
    (3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行线分线段成比例定理即可求得CD的长,从而可由梯形的面积公式求出四边形AODC的面积.
    试题解析:
    (1)∵A(0,2),BC∥x轴,
    ∴B(﹣1,2),C(3,2),
    ∴AB=1,CA=3,
    ∴线段AB与线段CA的长度之比为;
    (2)∵B是函数y=﹣(x<0)的一点,C是函数y=(x>0)的一点,
    ∴B(﹣,a),C(,a),
    ∴AB=,CA=,
    ∴线段AB与线段CA的长度之比为;
    (3)∵=,
    ∴=,
    又∵OA=a,CD∥y轴,
    ∴,
    ∴CD=4a,
    ∴四边形AODC的面积为=(a+4a)×=1.
    23、(1);(2);(3).
    【解析】
    (1)将点代入二次函数解析式即可;
    (2)过点作轴,证明即可得到即可得出点 A,B 的坐标;
    (3)设点的坐标为,解方程得出四边形为平行四边形,求出AC,AB的值,通过扫过区域的面积=代入计算即可.
    【详解】
    解:(1)∵点在二次函数的图象上,

    解方程,得
    ∴二次函数的表达式为.
    (2)如图1,过点作轴,垂足为.






    在和中,
    ∵,

    ∵点的坐标为 ,


    (3)如图2,把沿轴正方向平移,

    当点落在抛物线上点处时,设点的坐标为.
    解方程得:(舍去)或
    由平移的性质知,且,
    ∴四边形为平行四边形,


    扫过区域的面积== .
    【点睛】
    本题考查了二次函数与几何综合问题,涉及全等三角形的判定与性质,平行四边形的性质与判定,勾股定理解直角三角形,解题的关键是灵活运用二次函数的性质与几何的性质.
    24、探究:(1)3,1;(2);(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析.
    【解析】
    探究:(1)根据握手次数=参会人数×(参会人数-1)÷2,即可求出结论;
    (2)由(1)的结论结合参会人数为n,即可得出结论;
    (3)由(2)的结论结合共握手28次,即可得出关于n的一元二次方程,解之取其正值即可得出结论;
    拓展:将线段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为2,即可得出关于m的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对.
    【详解】
    探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1.
    故答案为3;1.
    (2)∵参加聚会的人数为n(n为正整数),
    ∴每人需跟(n-1)人握手,
    ∴握手总数为.
    故答案为.
    (3)依题意,得:=28,
    整理,得:n2-n-56=0,
    解得:n1=8,n2=-7(舍去).
    答:参加聚会的人数为8人.
    拓展:琪琪的思考对,理由如下:
    如果线段数为2,则由题意,得:=2,
    整理,得:m2-m-60=0,
    解得m1=,m2=(舍去).
    ∵m为正整数,
    ∴没有符合题意的解,
    ∴线段总数不可能为2.
    【点睛】
    本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含n的代数式表示出握手总数;(3)(拓展)找准等量关系,正确列出一元二次方程.
    25、(1)A(-4,0)和B(0,4);(2)或
    【解析】
    (1)抛物线解析式配方后,确定出顶点C坐标,对于一次函数解析式,分别令x与y为0求出对应y与x的值,确定出A与B坐标;
    (2)分m>0与m<0两种情况求出m的范围即可.
    【详解】
    解:(1)y=mx2+4mx+4m+1=m(x+2)2+1,
    ∴抛物线顶点坐标为C(-2,1),
    对于y=x+4,令x=0,得到y=4;y=0,得到x=-4,
    直线y=x+4与x轴、y轴交点坐标分别为A(-4,0)和B(0,4);
    (2)把x=-4代入抛物线解析式得:y=4m+1,
    ①当m>0时,y=4m+1>0,说明抛物线的对称轴左侧总与线段AB有交点,
    ∴只需要抛物线右侧与线段AB无交点即可,
    如图1所示,

    只需要当x=0时,抛物线的函数值y=4m+1<4,即,
    则当时,抛物线与线段AB只有一个交点;
    ②当m<0时,如图2所示,

    只需y=4m+1≥0即可,
    解得:,
    综上,当或时,抛物线与线段AB只有一个交点.
    【点睛】
    此题考查了抛物线与x轴的交点,二次函数的性质,以及二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解本题的关键.
    26、甲、乙获胜的机会不相同.
    【解析】试题分析:先画出树状图列举出所有情况,再分别算出甲、乙获胜的概率,比较即可判断.


    ∴甲、乙获胜的机会不相同.
    考点:可能性大小的判断
    点评:本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.
    27、(1)见解析;(2)PQmin=7,PQmax=13;(3) Smin=,Smax=18.
    【解析】
    (1)根据全等三角形判定定理求解即可.
    (2)以E为圆心,以5为半径画圆,①当E、P、Q三点共线时最PQ最小,②当P点在位置时PQ最大,分类讨论即可求解.
    (3)以E为圆心,以2为半径画圆,分类讨论出P点在位置时,四边形PADC面积的最值即可.
    【详解】
    (1)当P为AD中点时,



    △BCP为等腰三角形.
    (2)以E为圆心,以5为半径画圆

    ① 当E、P、Q三点共线时最PQ最小,PQ的最小值是12-5=7.
    ② 当P点在位置时PQ最大,PQ的最大值是
    (3)以E为圆心,以2为半径画圆.

    当点p为位置时,四边形PADC面积最大.
    当点p为位置时,四边形PADC最小=四边形+三角形=.
    【点睛】
    本题主要考查了等腰三角形性质,直线,面积最值问题,数形结合思想是解题关键.

    相关试卷

    西藏达孜中学2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份西藏达孜中学2022年初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    江西省赣州大余县联考2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份江西省赣州大余县联考2022年初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了计算3的结果是等内容,欢迎下载使用。

    2022年宁波市北仑区初中数学毕业考试模拟冲刺卷含解析: 这是一份2022年宁波市北仑区初中数学毕业考试模拟冲刺卷含解析,共24页。试卷主要包含了下列等式正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map