2022年江西省赣州市定南县重点名校中考四模数学试题含解析
展开这是一份2022年江西省赣州市定南县重点名校中考四模数学试题含解析,共17页。试卷主要包含了有一组数据,函数的图像位于等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为( )
A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm
2.下列运算结果正确的是( )
A.(x3﹣x2+x)÷x=x2﹣x B.(﹣a2)•a3=a6 C.(﹣2x2)3=﹣8x6 D.4a2﹣(2a)2=2a2
3.如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是( )
A. B. C. D.
4.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为( )
A.4 B.5 C.6 D.7
5.有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( )
A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,6
6.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:
甲组
158
159
160
160
160
161
169
乙组
158
159
160
161
161
163
165
以下叙述错误的是( )
A.甲组同学身高的众数是160
B.乙组同学身高的中位数是161
C.甲组同学身高的平均数是161
D.两组相比,乙组同学身高的方差大
7.△ABC在网络中的位置如图所示,则cos∠ACB的值为( )
A. B. C. D.
8.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A,B两城相距300 km;②小路的车比小带的车晚出发1 h,却早到1 h;③小路的车出发后2.5 h追上小带的车;④当小带和小路的车相距50 km时,t=或t=.其中正确的结论有( )
A.①②③④ B.①②④
C.①② D.②③④
9.函数的图像位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.如图,菱形ABCD中,∠B=60°,AB=4,以AD为直径的⊙O交CD于点E,则的长为( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,DE交AB于点F,若AB=AC,DB=BF,则AF与BF的比值为_____.
12.点(1,–2)关于坐标原点 O 的对称点坐标是_____.
13.如图,在△ABC中,AB=AC,BE、AD分别是边AC、BC上的高,CD=2,AC=6,那么CE=________.
14.有一组数据:3,a,4,6,7,它们的平均数是5,则a=_____,这组数据的方差是_____.
15.若向北走5km记作﹣5km,则+10km的含义是_____.
16.抛物线(为非零实数)的顶点坐标为_____________.
17.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为_____.
三、解答题(共7小题,满分69分)
18.(10分)计算:(﹣2)0+()﹣1+4cos30°﹣|4﹣|
19.(5分)先化简,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.
20.(8分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?
21.(10分)2018年4月12日上午,新中国历史上最大规模的海上阅兵在南海海域隆重举行,中国人解放军海军多艘战舰、多架战机和1万余名官兵参加了海上阅兵式,已知战舰和战机总数是124,战数的3倍比战机数的2倍少8.问有多少艘战舰和多少架战机参加了此次阅兵.
22.(10分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.
征文比赛成绩频数分布表
分数段
频数
频率
60≤m<70
38
0.38
70≤m<80
a
0.32
80≤m<90
b
c
90≤m≤100
10
0.1
合计
1
请根据以上信息,解决下列问题:
(1)征文比赛成绩频数分布表中c的值是 ;
(2)补全征文比赛成绩频数分布直方图;
(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.
23.(12分)如图,AB是⊙O的直径,弦DE交AB于点F,⊙O的切线BC与AD的延长线交于点C,连接AE.
(1)试判断∠AED与∠C的数量关系,并说明理由;
(2)若AD=3,∠C=60°,点E是半圆AB的中点,则线段AE的长为 .
24.(14分)声音在空气中传播的速度y(m/s)是气温x(℃)的一次函数,下表列出了一组不同气温的音速:
气温x(℃)
0
5
10
15
20
音速y(m/s)
331
334
337
340
343
(1)求y与x之间的函数关系式:
(2)气温x=23℃时,某人看到烟花燃放5s后才听到声响,那么此人与烟花燃放地约相距多远?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
【分析】由已知可证△ABO∽CDO,故 ,即.
【详解】由已知可得,△ABO∽CDO,
所以, ,
所以,,
所以,AB=5.4
故选B
【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质.
2、C
【解析】
根据多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则计算可得.
【详解】
A、(x3-x2+x)÷x=x2-x+1,此选项计算错误;
B、(-a2)•a3=-a5,此选项计算错误;
C、(-2x2)3=-8x6,此选项计算正确;
D、4a2-(2a)2=4a2-4a2=0,此选项计算错误.
故选:C.
【点睛】
本题主要考查整式的运算,解题的关键是掌握多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则.
3、C
【解析】
过点B作BE⊥AD于E,构建直角△ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图像.
【详解】
如图,过点B作BE⊥AD于E.∵∠A=60°,设AB边的长为x,∴BE=AB∙sin60°=x.∵平行四边形ABCD的周长为12,∴AB=(12-2x)=6-x,∴y=AD∙BE=(6-x)×x=﹣(0≤x≤6).则该函数图像是一开口向下的抛物线的一部分,观察选项,C符合题意.故选C.
【点睛】
本题考查了二次函数的图像,根据题意求出正确的函数关系式是解题的关键.
4、B
【解析】
试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.
此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根据勾股定理可得DC′===1.故选B.
5、C
【解析】
解:在这一组数据中6是出现次数最多的,故众数是6;
而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,
平均数是:(3+4+5+6+6)÷5=4.8,
故选C.
【点睛】
本题考查众数;算术平均数;中位数.
6、D
【解析】
根据众数、中位数和平均数及方差的定义逐一判断可得.
【详解】
A.甲组同学身高的众数是160,此选项正确;
B.乙组同学身高的中位数是161,此选项正确;
C.甲组同学身高的平均数是161,此选项正确;
D.甲组的方差为,乙组的方差为,甲组的方差大,此选项错误.
故选D.
【点睛】
本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键.
7、B
【解析】
作AD⊥BC的延长线于点D,如图所示:
在Rt△ADC中,BD=AD,则AB=BD.
cos∠ACB=,
故选B.
8、C
【解析】
观察图象可判断①②,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.
【详解】
由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,
∴①②都正确;
设小带车离开A城的距离y与t的关系式为y小带=kt,
把(5,300)代入可求得k=60,
∴y小带=60t,
设小路车离开A城的距离y与t的关系式为y小路=mt+n,
把(1,0)和(4,300)代入可得
解得
∴y小路=100t-100,
令y小带=y小路,可得60t=100t-100,
解得t=2.5,
即小带和小路两直线的交点横坐标为t=2.5,
此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,
∴③不正确;
令|y小带-y小路|=50,
可得|60t-100t+100|=50,即|100-40t|=50,
当100-40t=50时,
可解得t=,
当100-40t=-50时,
可解得t=,
又当t=时,y小带=50,此时小路还没出发,
当t=时,小路到达B城,y小带=250.
综上可知当t的值为或或或时,两车相距50 km,
∴④不正确.
故选C.
【点睛】
本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.
9、D
【解析】
根据反比例函数中,当,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.
【详解】
解:函数的图象位于第四象限.
故选:D.
【点睛】
此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键.
10、B
【解析】
连接OE,由菱形的性质得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性质和三角形内角和定理求出∠DOE=60°,再由弧长公式即可得出答案.
【详解】
解:连接OE,如图所示:
∵四边形ABCD是菱形,
∴∠D=∠B=60°,AD=AB=4,
∴OA=OD=2,
∵OD=OE,
∴∠OED=∠D=60°,
∴∠DOE=180°﹣2×60°=60°,
∴ 的长==;
故选B.
【点睛】
本题考查弧长公式、菱形的性质、等腰三角形的性质等知识;熟练掌握菱形的性质,求出∠DOE的度数是解决问题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
先利用旋转的性质得到BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,再利用等腰三角形的性质和三角形内角和定理证明∠ABD=∠A,则BD=AD,然后证明△BDC∽△ABC,则利用相似比得到BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,最后利用解方程求出AF与BF的比值.
【详解】
∵如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,∴BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,∵∠ABE=∠ADF,∴∠CBD=∠ADF,∵DB=BF,∴BF=BD=BC,而∠C=∠EDB,∴∠CBD=∠ABD,∴∠ABC=∠C=2∠ABD,∵∠BDC=∠A+∠ABD,∴∠ABD=∠A,∴BD=AD,∴CD=AF,∵AB=AC,∴∠ABC=∠C=∠BDC,∴△BDC∽△ABC,∴BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,整理得AF2+BF∙AF-BF2=0,∴AF=BF,即AF与BF的比值为.故答案是.
【点睛】
本题主要考查了旋转的性质、等腰三角形的性质、相似三角形的性质,熟练掌握这些知识点并灵活运用是解题的关键.
12、(-1,2)
【解析】
根据两个点关于原点对称时,它们的坐标符号相反可得答案.
【详解】
A(1,-2)关于原点O的对称点的坐标是(-1,2),
故答案为:(-1,2).
【点睛】
此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.
13、
【解析】
∵AB=AC,AD⊥BC,
∴BD=CD=2,
∵BE、AD分别是边AC、BC上的高,
∴∠ADC=∠BEC=90°,
∵∠C=∠C,
∴△ACD∽△BCE,
∴,
∴,
∴CE=,
故答案为.
14、5 1.
【解析】
∵一组数据:3,a,4,6,7,它们的平均数是5,
∴,
解得,,
∴=1.
故答案为5,1.
15、向南走10km
【解析】
分析:与北相反的方向是南,由题意,负数表示向北走,则正数就表示向南走,据此得出结论.
详解:∵ 向北走5km记作﹣5km,
∴ +10km表示向南走10km.
故答案是:向南走10km.
点睛:本题考查对相反意义量的认识:在一对具有相反意义的量中,先规定一个为正数,则另一个就要用负数表示.
16、
【解析】
【分析】将抛物线的解析式由一般式化为顶点式,即可得到顶点坐标.
【详解】y=mx2+2mx+1
=m(x2+2x)+1
=m(x2+2x+1-1)+1
=m(x+1)2 +1-m,
所以抛物线的顶点坐标为(-1,1-m),
故答案为(-1,1-m).
【点睛】本题考查了抛物线的顶点坐标,把抛物线的解析式转化为顶点式是解题的关键.
17、
【解析】
直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.
【详解】
过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,
由题意可得:∠C1NO=∠A1MO=90°,
∠1=∠2=∠1,
则△A1OM∽△OC1N,
∵OA=5,OC=1,
∴OA1=5,A1M=1,
∴OM=4,
∴设NO=1x,则NC1=4x,OC1=1,
则(1x)2+(4x)2=9,
解得:x=±(负数舍去),
则NO=,NC1=,
故点C的对应点C1的坐标为:(﹣,).
故答案为(﹣,).
【点睛】
此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.
三、解答题(共7小题,满分69分)
18、4
【解析】
直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简进而得出答案.
【详解】
(﹣2)0+()﹣1+4cos30°﹣|4﹣|
=1+3+4×﹣(4﹣2)
=4+2﹣4+2
=4.
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
19、-5
【解析】
根据分式的运算法则以及实数的运算法则即可求出答案.
【详解】
当x=sin30°+2﹣1+时,
∴x=++2=3,
原式=÷==﹣5.
【点睛】
本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
20、R= 或R=
【解析】
解:当圆与斜边相切时,则R=,即圆与斜边有且只有一个公共点,当R=时,点A在圆内,点B在圆外或圆上,则圆与斜边有且只有一个公共点.
考点:圆与直线的位置关系.
21、有48艘战舰和76架战机参加了此次阅兵.
【解析】
设有x艘战舰,y架战机参加了此次阅兵,根据题意列出方程组解答即可.
【详解】
设有x艘战舰,y架战机参加了此次阅兵,
根据题意,得,
解这个方程组,得 ,
答:有48艘战舰和76架战机参加了此次阅兵.
【点睛】
此题考查二元一次方程组的应用,关键是根据题意列出等量关系进行解答.
22、(1)0.2;(2)答案见解析;(3)300
【解析】
第一问,根据频率的和为1,求出c的值;第二问,先用分数段是90到100的频数和频率求出总的样本数量,然后再乘以频率分别求出a和b的值,再画出频数分布直方图;第三问用全市征文的总篇数乘以80分以上的频率得到全市80分以上的征文的篇数.
【详解】
解:(1)1﹣0.38﹣0.32﹣0.1=0.2,
故答案为0.2;
(2)10÷0.1=100,
100×0.32=32,100×0.2=20,
补全征文比赛成绩频数分布直方图:
(3)全市获得一等奖征文的篇数为:1000×(0.2+0.1)=300(篇).
【点睛】
掌握有关频率和频数的相关概念和计算,是解答本题的关键.
23、(1)∠AED=∠C,理由见解析;(2)
【解析】
(1)根据切线的性质和圆周角定理解答即可;
(2)根据勾股定理和三角函数进行解答即可.
【详解】
(1)∠AED=∠C,证明如下:
连接BD,
可得∠ADB=90°,
∴∠C+∠DBC=90°,
∵CB是⊙O的切线,
∴∠CBA=90°,
∴∠ABD+∠DBC=90°,
∴∠ABD=∠C,
∵∠AEB=∠ABD,
∴∠AED=∠C,
(2)连接BE,
∴∠AEB=90°,
∵∠C=60°,
∴∠CAB=30°,
在Rt△DAB中,AD=3,∠ADB=90°,
∴cos∠DAB=,
解得:AB=2,
∵E是半圆AB的中点,
∴AE=BE,
∵∠AEB=90°,
∴∠BAE=45°,
在Rt△AEB中,AB=2,∠ADB=90°,
∴cos∠EAB=,
解得:AE=.
故答案为
【点睛】
此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.
24、 (1) y=x+331;(2)1724m.
【解析】
(1)先设函数一般解析式,然后根据表格中的数据选择其中两个带入解析式中即可求得函数关系式(2)将x=23带入函数解析式中求解即可.
【详解】
解:(1)设y=kx+b,∴
∴k=,
∴y=x+331.
(2)当x=23时,y= x23+331=344.8
∴5344.8=1724.
∴此人与烟花燃放地相距约1724m.
【点睛】
此题重点考察学生对一次函数的实际应用,熟练掌握一次函数解析式的求法是解题的关键.
相关试卷
这是一份2022年江西省赣州市蓉江新区重点达标名校中考联考数学试卷含解析,共18页。试卷主要包含了的倒数是,关于x的方程x2+,下列说法正确的是等内容,欢迎下载使用。
这是一份2022年江西省赣州市重点达标名校中考一模数学试题含解析,共21页。试卷主要包含了下列函数中,二次函数是,如图所示的几何体的左视图是等内容,欢迎下载使用。
这是一份2022年江西省重点名校中考数学四模试卷含解析,共23页。试卷主要包含了如图,在中,,3的相反数是,近似数精确到等内容,欢迎下载使用。