开学活动
搜索
    上传资料 赚现金

    2022年山东省济宁市任城区达标名校中考数学最后冲刺浓缩精华卷含解析

    2022年山东省济宁市任城区达标名校中考数学最后冲刺浓缩精华卷含解析第1页
    2022年山东省济宁市任城区达标名校中考数学最后冲刺浓缩精华卷含解析第2页
    2022年山东省济宁市任城区达标名校中考数学最后冲刺浓缩精华卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东省济宁市任城区达标名校中考数学最后冲刺浓缩精华卷含解析

    展开

    这是一份2022年山东省济宁市任城区达标名校中考数学最后冲刺浓缩精华卷含解析,共23页。试卷主要包含了下列事件中,必然事件是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为(  )

    A. B. C. D.
    2.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是(  )
    A.平均数 B.众数 C.中位数 D.方差
    3.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是( )
    A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)
    4.据国家统计局2018年1月18日公布,2017年我国GDP总量为827122亿元,首次登上80万亿元的门槛,数据827122亿元用科学记数法表示为( )
    A.8.27122×1012 B.8.27122×1013 C.0.827122×1014 D.8.27122×1014
    5.下列事件中,必然事件是(  )
    A.抛掷一枚硬币,正面朝上
    B.打开电视,正在播放广告
    C.体育课上,小刚跑完1000米所用时间为1分钟
    D.袋中只有4个球,且都是红球,任意摸出一球是红球
    6.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( )

    A.和 B.谐 C.凉 D.山
    7.若55+55+55+55+55=25n,则n的值为(  )
    A.10 B.6 C.5 D.3
    8.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是(  )

    A.5 B.9 C.15 D.22
    9.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是  
    A. B. C. D.
    10.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为(  )

    A.50° B.55° C.60° D.65°
    11.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是(  )

    A.(﹣2,4),(1,3) B.(﹣2,4),(2,3)
    C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)
    12.下列命题是真命题的个数有(  )
    ①菱形的对角线互相垂直;
    ②平分弦的直径垂直于弦;
    ③若点(5,﹣5)是反比例函数y=图象上的一点,则k=﹣25;
    ④方程2x﹣1=3x﹣2的解,可看作直线y=2x﹣1与直线y=3x﹣2交点的横坐标.
    A.1个 B.2个 C.3个 D.4个
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在边长为1正方形ABCD中,点P是边AD上的动点,将△PAB沿直线BP翻折,点A的对应点为点Q,连接BQ、DQ.则当BQ+DQ的值最小时,tan∠ABP=_____.

    14.一元二次方程x﹣1=x2﹣1的根是_____.
    15.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是

    16.已知关于x的一元二次方程kx2+3x﹣4k+6=0有两个相等的实数根,则该实数根是_____.
    17.计算:=_____________.
    18.如图,正方形ABCD的边长为,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB, 垂足为点F,则EF的长是__________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:
    规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.
    规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.
    小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.
    20.(6分)解不等式组:并把解集在数轴上表示出来.
    21.(6分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
    (1)求抛物线的表达式;
    (2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
    (3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

    22.(8分)先化简代数式:,再代入一个你喜欢的数求值.
    23.(8分) [阅读]我们定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“中边三角形”,把这条边和其边上的中线称为“对应边”.

    [理解]如图1,Rt△ABC是“中边三角形”,∠C=90°,AC和BD是“对应边”,求tanA的值;
    [探究]如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.当β=45°时,若△APQ是“中边三角形”,试求的值.
    24.(10分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)

    25.(10分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.
    组别
    分数段
    频次
    频率
    A
    60≤x<70
    17
    0.17
    B
     70≤x<80
     30
     a
    C
     80≤x<90
     b
     0.45
    D
     90≤x<100
     8
     0.08
    请根据所给信息,解答以下问题:
    (1)表中a=______,b=______;
    (2)请计算扇形统计图中B组对应扇形的圆心角的度数;
    (3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.

    26.(12分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线A→D→C→B到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,∠A=45°,∠B=30°,桥DC和AB平行.
    (1)求桥DC与直线AB的距离;
    (2)现在从A地到达B地可比原来少走多少路程?
    (以上两问中的结果均精确到0.1km,参考数据:≈1.14,≈1.73)

    27.(12分)按要求化简:(a﹣1)÷,并选择你喜欢的整数a,b代入求值.
    小聪计算这一题的过程如下:
    解:原式=(a﹣1)÷…①
    =(a﹣1)•…②
    =…③
    当a=1,b=1时,原式=…④
    以上过程有两处关键性错误,第一次出错在第_____步(填序号),原因:_____;
    还有第_____步出错(填序号),原因:_____.
    请你写出此题的正确解答过程.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中 cos∠BCD=,可得BC=.
    故选B.
    点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.
    2、D
    【解析】
    A. ∵原平均数是:(1+2+3+3+4+1) ÷6=3;
    添加一个数据3后的平均数是:(1+2+3+3+4+1+3) ÷7=3;
    ∴平均数不发生变化.
    B. ∵原众数是:3;
    添加一个数据3后的众数是:3;
    ∴众数不发生变化;
    C. ∵原中位数是:3;
    添加一个数据3后的中位数是:3;
    ∴中位数不发生变化;
    D. ∵原方差是:;
    添加一个数据3后的方差是:;
    ∴方差发生了变化.
    故选D.
    点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键.
    3、B
    【解析】
    试题分析:由平移规律可得将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是(1,5),故选B.
    考点:点的平移.
    4、B
    【解析】
    由科学记数法的定义可得答案.
    【详解】
    解:827122亿即82712200000000,用科学记数法表示为8.27122×1013,
    故选B.
    【点睛】
    科学记数法表示数的标准形式为 (<10且n为整数).
    5、D
    【解析】
    试题解析:A. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;
    B. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;
    C. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;
    D. 袋中只有4个球,且都是红球,任意摸出一球是红球,是必然事件,符合题意.
    故选D.
    点睛:事件分为确定事件和不确定事件.
    必然事件和不可能事件叫做确定事件.
    6、D
    【解析】
    分析:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.
    详解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.
    故选:D.
    点睛:注意正方体的空间图形,从相对面入手,分析及解答问题.
    7、D
    【解析】
    直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.
    【详解】
    解:∵55+55+55+55+55=25n,
    ∴55×5=52n,
    则56=52n,
    解得:n=1.
    故选D.
    【点睛】
    此题主要考查了幂的乘方运算,正确将原式变形是解题关键.
    8、B
    【解析】
    条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
    【详解】
    课外书总人数:6÷25%=24(人),
    看5册的人数:24﹣5﹣6﹣4=9(人),
    故选B.
    【点睛】
    本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.
    9、A
    【解析】
    根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.
    【详解】
    ∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,
    ∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,
    ∴m<,
    故选A.
    【点睛】
    本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
    10、D
    【解析】
    试题分析:连接OC,根据平行可得:∠ODC=∠AOD=50°,则∠DOC=80°,则∠AOC=130°,根据同弧所对的圆周角等于圆心角度数的一半可得:∠B=130°÷2=65°.
    考点:圆的基本性质
    11、A
    【解析】
    作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.
    【详解】
    解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.
    ∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.
    ∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).
    同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).
    故选A.

    【点睛】
    本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.
    12、C
    【解析】
    根据菱形的性质、垂径定理、反比例函数和一次函数进行判断即可.
    【详解】
    解:①菱形的对角线互相垂直是真命题;
    ②平分弦(非直径)的直径垂直于弦,是假命题;
    ③若点(5,-5)是反比例函数y=图象上的一点,则k=-25,是真命题;
    ④方程2x-1=3x-2的解,可看作直线y=2x-1与直线y=3x-2交点的横坐标,是真命题;
    故选C.
    【点睛】
    本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.一些命题的正确性是用推理证实的,这样的真命题叫做定理.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、﹣1
    【解析】
    连接DB,若Q点落在BD上,此时和最短,且为,设AP=x,则PD=1﹣x,PQ=x.解直角三角形得到AP=﹣1,根据三角函数的定义即可得到结论.
    【详解】
    如图:

    连接DB,若Q点落在BD上,此时和最短,且为,
    设AP=x,则PD=1﹣x,PQ=x.
    ∵∠PDQ=45°,
    ∴PD=PQ,即1﹣x=,
    ∴x=﹣1,
    ∴AP=﹣1,
    ∴tan∠ABP==﹣1,
    故答案为:﹣1.
    【点睛】
    本题考查了翻折变换(折叠问题),正方形的性质,轴对称﹣最短路线问题,正确的理解题意是解题的关键.
    14、x=0或x=1.
    【解析】
    利用因式分解法求解可得.
    【详解】
    ∵(x﹣1)﹣(x+1)(x﹣1)=0,
    ∴(x﹣1)(1﹣x﹣1)=0,即﹣x(x﹣1)=0,
    则x=0或x=1,
    故答案为:x=0或x=1.
    【点睛】
    本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
    15、4
    【解析】
    当CD∥AB时,PM长最大,连接OM,OC,得出矩形CPOM,推出PM=OC,求出OC长即可.
    【详解】

    当CD∥AB时,PM长最大,连接OM,OC,
    ∵CD∥AB,CP⊥CD,
    ∴CP⊥AB,
    ∵M为CD中点,OM过O,
    ∴OM⊥CD,
    ∴∠OMC=∠PCD=∠CPO=90°,
    ∴四边形CPOM是矩形,
    ∴PM=OC,
    ∵⊙O直径AB=8,
    ∴半径OC=4,
    即PM=4.
    【点睛】
    本题考查矩形的判定和性质,垂径定理,平行线的性质,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
    16、﹣1
    【解析】
    根据二次项系数非零结合根的判别式△=0,即可得出关于k的一元一次不等式及一元二次方程,解之即可得出k值,将其代入原方程中解之即可得出原方程的解.
    【详解】
    解:∵关于x的一元二次方程kx1+3x-4k+6=0有两个相等的实数根,
    ∴,
    解得:k=,
    ∴原方程为x1+4x+4=0,即(x+1)1=0,
    解得:x=-1.
    故答案为:-1.
    【点睛】
    本题考查根的判别式、一元二次方程的定义以及配方法解一元二次方程,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.
    17、
    【解析】
    分析:按单项式乘以多项式的法则将括号去掉,在合并同类项即可.
    详解:
    原式=.
    故答案为:.
    点睛:熟记整式乘法和加减法的相关运算法则是正确解答这类题的关键.
    18、2
    【解析】
    设EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.
    【详解】
    设EF=x,
    ∵四边形ABCD是正方形,
    ∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,
    ∴BD=AB=4+4,EF=BF=x,
    ∴BE=x,
    ∵∠BAE=22.5°,
    ∴∠DAE=90°-22.5°=67.5°,
    ∴∠AED=180°-45°-67.5°=67.5°,
    ∴∠AED=∠DAE,
    ∴AD=ED,
    ∴BD=BE+ED=x+4+2=4+4,
    解得:x=2,
    即EF=2.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1):,,,,,,,,共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析
    【解析】
    (1)利用列举法,列举所有的可能情况即可;
    (2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.
    【详解】
    (1)所有可能出现的结果如下:,,,,,,,,共9种;
    (1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,
    ∴在规划1中,(小黄赢);
    红心牌点数是黑桃牌点数的整倍数有4种可能,
    ∴在规划2中,(小黄赢).
    ∵,∴小黄要在游戏中获胜,小黄会选择规则1.
    【点睛】
    考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
    20、不等式组的解集为﹣7<x≤1,将解集表示在数轴上表示见解析.
    【解析】
    试题分析:先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.
    试题解析:由①得:﹣2x≥﹣2,即x≤1,
    由②得:4x﹣2<5x+5,即x>﹣7,
    所以﹣7<x≤1.
    在数轴上表示为:
    .
    考点:解一元一次不等式组;在数轴上表示不等式的解集.
    点睛:分别求出各不等式的解集,再求出其公共解集即可.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
    21、 (1)抛物线的解析式为:y=﹣x1+x+1
    (1)存在,P1(,2),P1(,),P3(,﹣)
    (3)当点E运动到(1,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.
    【解析】
    试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;
    (1)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P1,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;
    (3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.
    试题解析:(1)∵抛物线y=﹣x1+mx+n经过A(﹣1,0),C(0,1).
    解得:,
    ∴抛物线的解析式为:y=﹣x1+x+1;
    (1)∵y=﹣x1+x+1,

    ∴y=﹣(x﹣)1+,
    ∴抛物线的对称轴是x=.
    ∴OD=.
    ∵C(0,1),
    ∴OC=1.
    在Rt△OCD中,由勾股定理,得
    CD=.
    ∵△CDP是以CD为腰的等腰三角形,
    ∴CP1=CP1=CP3=CD.
    作CH⊥x轴于H,
    ∴HP1=HD=1,
    ∴DP1=2.
    ∴P1(,2),P1(,),P3(,﹣);
    (3)当y=0时,0=﹣x1+x+1
    ∴x1=﹣1,x1=2,
    ∴B(2,0).
    设直线BC的解析式为y=kx+b,由图象,得

    解得:,
    ∴直线BC的解析式为:y=﹣x+1.
    如图1,过点C作CM⊥EF于M,设E(a,﹣a+1),F(a,﹣a1+a+1),
    ∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).
    ∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,
    =+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),
    =﹣a1+2a+(0≤x≤2).
    =﹣(a﹣1)1+
    ∴a=1时,S四边形CDBF的面积最大=,
    ∴E(1,1).

    考点:1、勾股定理;1、等腰三角形的性质;3、四边形的面积;2、二次函数的最值
    22、
    【解析】
    先根据分式的运算法则进行化简,再代入使分式有意义的值计算.
    【详解】
    解:原式

    .
    使原分式有意义的值可取2,
    当时,原式.
    【点睛】
    考核知识点:分式的化简求值.掌握分式的运算法则是关键.
    23、tanA=;综上所述,当β=45°时,若△APQ是“中边三角形”,的值为或.
    【解析】
    (1)由AC和BD是“对应边”,可得AC=BD,设AC=2x,则CD=x,BD=2x,可得∴BC=x,可得tanA===
    (2) 当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,可得AC是QP的垂直平分线.可求得△AEF∽△CEP,=,分两种情况:
    当底边PQ与它的中线AE相等,即AE=PQ时,
    ==,
    ∴=;
    当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,
    (3)作QN⊥AP于N,可得tan∠APQ===,
    tan∠APE===,
    ∴=,
    【详解】
    解:[理解]∵AC和BD是“对应边”,
    ∴AC=BD,
    设AC=2x,则CD=x,BD=2x,
    ∵∠C=90°,
    ∴BC===x,
    ∴tanA===;
    [探究]若β=45°,当点P在AB上时,△APQ是等腰直角三角形,不可能是“中边三角形”,
    如图2,当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,
    ∵PC=QC,∠ACB=∠ACD,
    ∴AC是QP的垂直平分线,
    ∴AP=AQ,
    ∵∠CAB=∠ACP,∠AEF=∠CEP,
    ∴△AEF∽△CEP,
    ∴===,
    ∵PE=CE,
    ∴=,
    分两种情况:
    当底边PQ与它的中线AE相等,即AE=PQ时,
    ==,
    ∴=;
    当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,
    如图3,作QN⊥AP于N,
    ∴MN=AN=PM=QM,
    ∴QN=MN,
    ∴ntan∠APQ===,
    ∴ta∠APE===,
    ∴=,
    综上所述,当β=45°时,若△APQ是“中边三角形”,的值为或.

    【点睛】本题是一道相 似形综合运用的试题, 考查了相 似三角形的判定及性质的运用, 勾股定理的运用, 等腰直角三角形的性质的运用, 等腰三角形的性质的运用, 锐角三角形函数值的运用, 解答时灵活运用三角函数值建立方程求解是解答的关键.
    24、这棵树CD的高度为8.7米
    【解析】
    试题分析:首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.
    试题解析:∵∠CBD=∠A+∠ACB,
    ∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,
    ∴∠A=∠ACB,
    ∴BC=AB=10(米).
    在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).
    答:这棵树CD的高度为8.7米.
    考点:解直角三角形的应用
    25、(1)0.3 ,45;(2)108°;(3).
    【解析】
    (1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;
    (2)B组的频率乘以360°即可求得答案;
    (2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;
    【详解】
    (1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人).
    故答案为0.3,45;
    (2)360°×0.3=108°.
    答:扇形统计图中B组对应扇形的圆心角为108°.
    (3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:

    ∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    26、(1)桥DC与直线AB的距离是6.0km;(2)现在从A地到达B地可比原来少走的路程是4.1km.
    【解析】
    (1)过C向AB作垂线构建三角形,求出垂线段的长度即可;(2)过点D向AB作垂线,然后根据解三角形求出AD, CB的长,进而求出现在从A地到达B地可比原来少走的路程.
    【详解】
    解:(1)作CH⊥AB于点H,如图所示,

    ∵BC=12km,∠B=30°,
    ∴km,BH=km,
    即桥DC与直线AB的距离是6.0km;
    (2)作DM⊥AB于点M,如图所示,

    ∵桥DC和AB平行,CH=6km,
    ∴DM=CH=6km,
    ∵∠DMA=90°,∠B=45°,MH=EF=DC,
    ∴AD=km,AM=DM=6km,
    ∴现在从A地到达B地可比原来少走的路程是:(AD+DC+BC)﹣(AM+MH+BH)=AD+DC+BC﹣AM﹣MH﹣BH=AD+BC﹣AM﹣BH=km,
    即现在从A地到达B地可比原来少走的路程是4.1km.
    【点睛】
    做辅助线,构建直角三角形,根据边角关系解三角形,是解答本题的关键.
    27、①, 运算顺序错误; ④, a等于1时,原式无意义.
    【解析】
    由于乘法和除法是同级运算,应当按照从左向右的顺序计算,①运算顺序错误;④当a=1时,等于0,原式无意义.
    【详解】
    ①运算顺序错误;
    故答案为①,运算顺序错误;
    ④当a=1时,等于0,原式无意义.
    故答案为a等于1时,原式无意义.



    当时,原式
    【点睛】
    本题考查了分式的化简求值,注意运算顺序和分式有意义的条件.

    相关试卷

    2022年濉溪县重点达标名校中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年濉溪县重点达标名校中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了下列图形是轴对称图形的有等内容,欢迎下载使用。

    2022年济南历下区达标名校中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年济南历下区达标名校中考数学最后冲刺浓缩精华卷含解析,共16页。试卷主要包含了下列计算正确的是,下列命题中,真命题是,不等式组的解集在数轴上表示为等内容,欢迎下载使用。

    2022届浙教版重点名校中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022届浙教版重点名校中考数学最后冲刺浓缩精华卷含解析,共23页。试卷主要包含了如图所示的几何体的俯视图是,如图,将△ABC绕点C等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map