年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年山东省莱芜市陈毅中学中考数学押题试卷含解析

    2022年山东省莱芜市陈毅中学中考数学押题试卷含解析第1页
    2022年山东省莱芜市陈毅中学中考数学押题试卷含解析第2页
    2022年山东省莱芜市陈毅中学中考数学押题试卷含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东省莱芜市陈毅中学中考数学押题试卷含解析

    展开

    这是一份2022年山东省莱芜市陈毅中学中考数学押题试卷含解析,共18页。试卷主要包含了答题时请按要求用笔,下列计算正确的是,﹣23的相反数是,对于不等式组,下列说法正确的是,解分式方程时,去分母后变形为,某一公司共有51名员工等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示.欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰(  )



    平均数
    8
    8
    方差
    1.2
    1.8

    A.甲 B.乙 C.丙 D.丁
    2.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )
    A.16个 B.15个 C.13个 D.12个
    3.在﹣3,﹣1,0,1四个数中,比﹣2小的数是(  )
    A.﹣3 B.﹣1 C.0 D.1
    4.如图,立体图形的俯视图是  

    A. B. C. D.
    5.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是( )
    A. B. C. D.
    6.下列计算正确的是(  )
    A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2
    C.a2•a3=a6 D.﹣3a2+2a2=﹣a2
    7.﹣23的相反数是(  )
    A.﹣8 B.8 C.﹣6 D.6
    8.对于不等式组,下列说法正确的是(  )
    A.此不等式组的正整数解为1,2,3
    B.此不等式组的解集为
    C.此不等式组有5个整数解
    D.此不等式组无解
    9.解分式方程时,去分母后变形为
    A. B.
    C. D.
    10.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会( )
    A.平均数和中位数不变 B.平均数增加,中位数不变
    C.平均数不变,中位数增加 D.平均数和中位数都增大
    二、填空题(共7小题,每小题3分,满分21分)
    11.高速公路某收费站出城方向有编号为的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:
    收费出口编号





    通过小客车数量(辆)
    260
    330
    300
    360
    240
    在五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________.
    12.当 __________时,二次函数 有最小值___________.
    13.抛物线y=x2﹣2x+3的对称轴是直线_____.
    14.关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是_______.
    15.如图,ABCD是菱形,AC是对角线,点E是AB的中点,过点E作对角线AC的垂线,垂足是点M,交AD边于点F,连结DM.若∠BAD=120°,AE=2,则DM=__.

    16.如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是_____.

    17.已知是方程组的解,则3a﹣b的算术平方根是_____.
    三、解答题(共7小题,满分69分)
    18.(10分)某商店销售两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需280元;购买3个A品牌和1个B品牌的计算器共需210元.
    (Ⅰ)求这两种品牌计算器的单价;
    (Ⅱ)开学前,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的九折销售,B品牌计算器10个以上超出部分按原价的七折销售.设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1,y2关于x的函数关系式.
    (Ⅲ)某校准备集体购买同一品牌的计算器,若购买计算器的数量超过15个,购买哪种品牌的计算器更合算?请说明理由.
    19.(5分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间用t表示,单位:小时,采用随机抽样的方法进行问卷调查,调查结果按,,,分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:

    求本次调查的学生人数;
    求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;
    若该校共有学生1200人,试估计每周课外阅读时间满足的人数.
    20.(8分)如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.
    (1)求证:CF=DF;
    (2)连接OF,若AB=10,BC=6,求线段OF的长.

    21.(10分)如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)数轴上点B对应的数是______.经过几秒,点M、点N分别到原点O的距离相等?

    22.(10分)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.
    (1)求购买一个足球,一个篮球分别需要多少元?
    (2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?
    23.(12分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.请你用画树状图或列表的方法,求出这两数和为6的概率.如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.
    24.(14分)菱形的边长为5,两条对角线、相交于点,且,的长分别是关于的方程的两根,求的值.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    求出甲、乙的平均数、方差,再结合方差的意义即可判断.
    【详解】
    =(6+10+8+9+8+7+8+9+7+7)=8,
    = [(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]
    =×13
    =1.3;
    =(7+10+7+7+9+8+7+9+9+7)=8,
    = [(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]
    =×12
    =1.2;
    丙的平均数为8,方差为1.2,
    丁的平均数为8,方差为1.8,
    故4个人的平均数相同,方差丁最大.
    故应该淘汰丁.
    故选D.
    【点睛】
    本题考查方差、平均数、折线图等知识,解题的关键是记住平均数、方差的公式.
    2、D
    【解析】
    由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.
    【详解】
    解:设白球个数为:x个,
    ∵摸到红色球的频率稳定在25%左右,
    ∴口袋中得到红色球的概率为25%,
    ∴ ,
    解得:x=12,
    经检验x=12是原方程的根,
    故白球的个数为12个.
    故选:D.
    【点睛】
    本题考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题的关键.
    3、A
    【解析】
    因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案.
    【详解】
    因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,
    所以在-3,-1,0,1这四个数中比-2小的数是-3,
    故选A.
    【点睛】
    本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.
    4、C
    【解析】
    试题分析:立体图形的俯视图是C.故选C.
    考点:简单组合体的三视图.
    5、D
    【解析】
    根据中心对称图形的概念求解.
    【详解】
    解:A.不是中心对称图形,本选项错误;
    B.不是中心对称图形,本选项错误;
    C.不是中心对称图形,本选项错误;
    D.是中心对称图形,本选项正确.
    故选D.
    【点睛】
    本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    6、D
    【解析】
    根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.
    【详解】
    故选项A错误,
    故选项B错误,
    故选项C错误,
    故选项D正确,
    故选:D.
    【点睛】
    考查整式的除法,完全平方公式,同底数幂相乘以及合并同类项,比较基础,难度不大.
    7、B
    【解析】
    ∵=﹣8,﹣8的相反数是8,∴的相反数是8,
    故选B.
    8、A
    【解析】
    解:,解①得x≤,解②得x>﹣1,所以不等式组的解集为﹣1<x≤,所以不等式组的整数解为1,2,1.故选A.
    点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
    9、D
    【解析】
    试题分析:方程,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.
    考点:解分式方程的步骤.
    10、B
    【解析】
    本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数.
    【详解】
    解:设这家公司除经理外50名员工的工资和为a元,则这家公司所有员工去年工资的平均数是元,今年工资的平均数是元,显然

    由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变.
    故选B.
    【点睛】
    本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题.同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响.

    二、填空题(共7小题,每小题3分,满分21分)
    11、B
    【解析】
    利用同时开放其中的两个安全出口,20分钟所通过的小车的数量分析对比,能求出结果.
    【详解】
    同时开放A、E两个安全出口,与同时开放D、E两个安全出口,20分钟的通过数量发现得到D疏散乘客比A快;
    同理同时开放BC与 CD进行对比,可知B疏散乘客比D快;
    同理同时开放BC与 AB进行对比,可知C疏散乘客比A快;
    同理同时开放DE与 CD进行对比,可知E疏散乘客比C快;
    同理同时开放AB与 AE进行对比,可知B疏散乘客比E快;
    所以B口的速度最快
    故答案为B.
    【点睛】
    本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题.
    12、1 5
    【解析】
    二次函数配方,得:,所以,当x=1时,y有最小值5,
    故答案为1,5.
    13、x=1
    【解析】
    把解析式化为顶点式可求得答案.
    【详解】
    解:∵y=x2-2x+3=(x-1)2+2,
    ∴对称轴是直线x=1,
    故答案为x=1.
    【点睛】
    本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).
    14、k<2且k≠1
    【解析】
    试题解析:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,
    ∴k-1≠0且△=(-2)2-4(k-1)>0,
    解得:k<2且k≠1.
    考点:1.根的判别式;2.一元二次方程的定义.
    15、.
    【解析】
    作辅助线,构建直角△DMN,先根据菱形的性质得:∠DAC=60°,AE=AF=2,也知菱形的边长为4,利用勾股定理求MN和DN的长,从而计算DM的长.
    【详解】
    解:过M作MN⊥AD于N,
    ∵四边形ABCD是菱形,

    ∵EF⊥AC,
    ∴AE=AF=2,∠AFM=30°,
    ∴AM=1,
    Rt△AMN中,∠AMN=30°,

    ∵AD=AB=2AE=4,

    由勾股定理得:
    故答案为

    【点睛】
    本题主要考查了菱形的性质,等腰三角形的性质,勾股定理及直角三角形30度角的性质,熟练掌握直角三角形中30°所对的直角边是斜边的一半.
    16、(2,0)
    【解析】
    【分析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE≌△PAF,根据PE=AF=3,列式可得结论.
    【详解】连接PB、PA,过B作BE⊥x轴于E,过A作AF⊥x轴于F,
    ∵A(m,﹣3)和点B(﹣1,n),
    ∴OE=1,AF=3,
    ∵∠ACB=45°,
    ∴∠APB=90°,
    ∴∠BPE+∠APF=90°,
    ∵∠BPE+∠EBP=90°,
    ∴∠APF=∠EBP,
    ∵∠BEP=∠AFP=90°,PA=PB,
    ∴△BPE≌△PAF,
    ∴PE=AF=3,
    设P(a,0),
    ∴a+1=3,
    a=2,
    ∴P(2,0),
    故答案为(2,0).

    【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.
    17、2.
    【解析】
    灵活运用方程的性质求解即可。
    【详解】
    解:由是方程组的解,可得满足方程组,
    由①+②的,3x-y=8,即可3a-b=8,
    故3a﹣b的算术平方根是,
    故答案:
    【点睛】
    本题主要考查二元一次方程组的性质及其解法。

    三、解答题(共7小题,满分69分)
    18、(1)A种品牌计算器50元/个,B种品牌计算器60元/个;(2)y1=45x, y2= ;(3)详见解析.
    【解析】
    (1)根据题意列出二元一次方程组并求解即可;
    (2)按照“购买所需费用=折扣×单价×数量”列式即可,注意B品牌计算器的采购要分0≤x≤10和x>10两种情况考虑;
    (3)根据上问所求关系式,分别计算当x>15时,由y1=y2、y1>y2、y1<y2确定其分别对应的销量范围,从而确定方案.
    【详解】
    (Ⅰ)设A、B两种品牌的计算器的单价分别为a元、b元,
    根据题意得,,
    解得:,
    答:A种品牌计算器50元/个,B种品牌计算器60元/个;
    (Ⅱ)A品牌:y1=50x•0.9=45x;
    B品牌:①当0≤x≤10时,y2=60x,
    ②当x>10时,y2=10×60+60×(x﹣10)×0.7=42x+180,
    综上所述:
    y1=45x,
    y2=;
    (Ⅲ)当y1=y2时,45x=42x+180,解得x=60,即购买60个计算器时,两种品牌都一样;
    当y1>y2时,45x>42x+180,解得x>60,即购买超过60个计算器时,B品牌更合算;
    当y1<y2时,45x<42x+180,解得x<60,即购买不足60个计算器时,A品牌更合算,
    当购买数量为15时,显然购买A品牌更划算.
    【点睛】
    本题考查了二元一次方程组的应用.
    19、本次调查的学生人数为200人;B所在扇形的圆心角为,补全条形图见解析;全校每周课外阅读时间满足的约有360人.
    【解析】
    【分析】根据等级A的人数及所占百分比即可得出调查学生人数;
    先计算出C在扇形图中的百分比,用在扇形图中的百分比可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角;
    总人数课外阅读时间满足的百分比即得所求.
    【详解】由条形图知,A级的人数为20人,
    由扇形图知:A级人数占总调查人数的,
    所以:人,
    即本次调查的学生人数为200人;
    由条形图知:C级的人数为60人,
    所以C级所占的百分比为:,
    B级所占的百分比为:,
    B级的人数为人,
    D级的人数为:人,
    B所在扇形的圆心角为:,
    补全条形图如图所示:

    因为C级所占的百分比为,
    所以全校每周课外阅读时间满足的人数为:人,
    答:全校每周课外阅读时间满足的约有360人.
    【点睛】本题考查了扇形图和条形图的相关知识,从统计图中找到必要的信息进行解题是关键.扇形图中某项的百分比,扇形图中某项圆心角的度数该项在扇形图中的百分比.
    20、(1)详见解析;(2)OF=.
    【解析】
    (1)连接OC,如图,根据切线的性质得∠1+∠3=90°,则可证明∠3=∠4,再根据圆周角定理得到∠ACB=90°,然后根据等角的余角相等得到∠BDC=∠5,从而根据等腰三角形的判定定理得到结论;
    (2)根据勾股定理计算出AC=8,再证明△ABC∽△ABD,利用相似比得到AD=,然后证明OF为△ABD的中位线,从而根据三角形中位线性质求出OF的长.
    【详解】
    (1)证明:连接OC,如图,

    ∵CF为切线,
    ∴OC⊥CF,
    ∴∠1+∠3=90°,
    ∵BM⊥AB,
    ∴∠2+∠4=90°,
    ∵OC=OB,
    ∴∠1=∠2,
    ∴∠3=∠4,
    ∵AB为直径,
    ∴∠ACB=90°,
    ∴∠3+∠5=90°,∠4+∠BDC=90°,
    ∴∠BDC=∠5,
    ∴CF=DF;
    (2)在Rt△ABC中,AC==8,
    ∵∠BAC=∠DAB,
    ∴△ABC∽△ABD,
    ∴,即,
    ∴AD=,
    ∵∠3=∠4,
    ∴FC=FB,
    而FC=FD,
    ∴FD=FB,
    而BO=AO,
    ∴OF为△ABD的中位线,
    ∴OF=AD=.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.
    21、(1)1;(2)经过2秒或2秒,点M、点N分别到原点O的距离相等
    【解析】
    试题分析:(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;
    (2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.
    试题解析:(1)∵OB=3OA=1,
    ∴B对应的数是1.
    (2)设经过x秒,点M、点N分别到原点O的距离相等,
    此时点M对应的数为3x-2,点N对应的数为2x.
    ①点M、点N在点O两侧,则
    2-3x=2x,
    解得x=2;
    ②点M、点N重合,则,
    3x-2=2x,
    解得x=2.
    所以经过2秒或2秒,点M、点N分别到原点O的距离相等.
    22、(1)一个足球需要50元,一个篮球需要80元;(2)1个.
    【解析】
    (1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,根据购买2个足球和3个篮球共需340元,4个排球和5个篮球共需600元,可得出方程组,解出即可;
    【详解】
    (1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,
    由题意得:,
    解得:.
    答:购买一个足球需要50元,购买一个篮球需要80元;
    (2)设该中学购买篮球m个,
    由题意得:80m+50(100﹣m)≤6000,
    解得:m≤1,
    ∵m是整数,
    ∴m最大可取1.
    答:这所中学最多可以购买篮球1个.
    【点睛】
    本题考查了一元一次不等式及二元一次方程组的知识,解答本题的关键是仔细审题,得到等量关系及不等关系,难度一般.
    23、 (1)列表见解析;(2)这个游戏规则对双方不公平.
    【解析】
    (1)首先根据题意列表,然后根据表求得所有等可能的结果与两数和为6的情况,再利用概率公式求解即可;
    (2)分别求出和为奇数、和为偶数的概率,即可得出游戏的公平性.
    【详解】
    (1)列表如下:

    由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率;
    (2)这个游戏规则对双方不公平.理由如下:
    因为P(和为奇数),P(和为偶数),而,所以这个游戏规则对双方是不公平的.
    【点睛】
    本题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.
    24、.
    【解析】
    由题意可知:菱形ABCD的边长是5,则AO2+BO2=25,则再根据根与系数的关系可得:AO+BO=−(2m−1),AO∙BO=m2+3;代入AO2+BO2中,得到关于m的方程后,即可求得m的值.
    【详解】
    解:∵,的长分别是关于的方程的两根,
    设方程的两根为和,可令,,
    ∵四边形是菱形,
    ∴,
    在中:由勾股定理得:,
    ∴,则,
    由根与系数的关系得:,,
    ∴,
    整理得:,
    解得:,
    又∵,
    ∴,解得,
    ∴.
    【点睛】
    此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.

    相关试卷

    山东省莱芜市陈毅中学2023-2024学年八上数学期末检测试题含答案:

    这是一份山东省莱芜市陈毅中学2023-2024学年八上数学期末检测试题含答案,共7页。试卷主要包含了已知,若是完全平方式,则m的值等于等内容,欢迎下载使用。

    山东省济南市莱芜区陈毅中学2021-2022学年中考押题数学预测卷含解析:

    这是一份山东省济南市莱芜区陈毅中学2021-2022学年中考押题数学预测卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列分式是最简分式的是,下列计算正确的是,初三,下列各运算中,计算正确的是,若分式方程无解,则a的值为等内容,欢迎下载使用。

    山东省济南市莱芜区陈毅中学2022年中考数学仿真试卷含解析:

    这是一份山东省济南市莱芜区陈毅中学2022年中考数学仿真试卷含解析,共22页。试卷主要包含了已知二次函数y=3,下列实数中,有理数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map