2022年山东省临沂市兰陵县中考试题猜想数学试卷含解析
展开这是一份2022年山东省临沂市兰陵县中考试题猜想数学试卷含解析,共17页。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.从 ,0,π, ,6这5个数中随机抽取一个数,抽到有理数的概率是( )
A. B. C. D.
2.叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为( )
A.0.5×10﹣4 B.5×10﹣4 C.5×10﹣5 D.50×10﹣3
3.下列调查中,最适合采用全面调查(普查)的是( )
A.对我市中学生每周课外阅读时间情况的调查
B.对我市市民知晓“礼让行人”交通新规情况的调查
C.对我市中学生观看电影《厉害了,我的国》情况的调查
D.对我国首艘国产航母002型各零部件质量情况的调查
4.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为( )
A.2 B.4 C.6 D.8
5.一元二次方程3x2-6x+4=0根的情况是
A.有两个不相等的实数根 B.有两个相等的实数根 C.有两个实数根 D.没有实数根
6.某班 30名学生的身高情况如下表:
身高
人数
1
3
4
7
8
7
则这 30 名学生身高的众数和中位数分别是
A., B.,
C., D.,
7.如图,数轴上表示的是下列哪个不等式组的解集( )
A. B. C. D.
8.如图,在中,,,,点在以斜边为直径的半圆上,点是的三等分点,当点沿着半圆,从点运动到点时,点运动的路径长为( )
A.或 B.或 C.或 D.或
9.下列调查中,最适合采用普查方式的是( )
A.对太原市民知晓“中国梦”内涵情况的调查
B.对全班同学1分钟仰卧起坐成绩的调查
C.对2018年央视春节联欢晚会收视率的调查
D.对2017年全国快递包裹产生的包装垃圾数量的调查
10.如图,反比例函数y=-的图象与直线y=-x的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则△ABC的面积为( )
A.8 B.6 C.4 D.2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.小青在八年级上学期的数学成绩如下表所示.
平时测验
期中考试
期末考试
成绩
86
90
81
如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是_____分.
12.如图,在3×3的正方形网格中,点A,B,C,D,E,F,G都是格点,从C,D,E,F,G五个点中任意取一点,以所取点及AB为顶点画三角形,所画三角形时等腰三角形的概率是_____.
13.在Rt△ABC内有边长分别为2,x,3的三个正方形如图摆放,则中间的正方形的边长x的值为_____.
14.如图,直线l1∥l2,则∠1+∠2=____.
15.如果某数的一个平方根是﹣5,那么这个数是_____.
16.分解因式______.
三、解答题(共8题,共72分)
17.(8分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
18.(8分)如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C
处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长
(≈1.73).
19.(8分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?
20.(8分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:
(1)甲乙两地相距 千米,慢车速度为 千米/小时.
(2)求快车速度是多少?
(3)求从两车相遇到快车到达甲地时y与x之间的函数关系式.
(4)直接写出两车相距300千米时的x值.
21.(8分)已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.
(1)求∠AEC的度数;
(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.
22.(10分)阅读材料:已知点和直线,则点P到直线的距离d可用公式计算.
例如:求点到直线的距离.
解:因为直线可变形为,其中,所以点到直线的距离为:.根据以上材料,求:点到直线的距离,并说明点P与直线的位置关系;已知直线与平行,求这两条直线的距离.
23.(12分)为了保障市民安全用水,我市启动自来水管改造工程,该工程若甲队单独施工,恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的3倍.若甲、乙两队先合作施工45天,则余下的工程甲队还需单独施工23天才能完成.这项工程的规定时间是多少天?
24.如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=10t﹣5t1.小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t在什么范围时,飞行高度不低于15m?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据有理数的定义可找出在从,0,π,,6这5个数中只有0、、6为有理数,再根据概率公式即可求出抽到有理数的概率.
【详解】
∵在,0,π,,6这5个数中有理数只有0、、6这3个数,
∴抽到有理数的概率是,
故选C.
【点睛】
本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键.
2、C
【解析】
绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,
0.00005=,
故选C.
3、D
【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.由此,对各选项进行辨析即可.
【详解】
A、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;
B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;
C、对我市中学生观看电影《厉害了,我的国》情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;
D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;
故选D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
4、B
【解析】
证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题.
【详解】
∵∠A=∠A,∠ADC=∠ACB,
∴△ADC∽△ACB,
∴,
∴AC2=AD•AB=2×8=16,
∵AC>0,
∴AC=4,
故选B.
【点睛】
本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.
5、D
【解析】
根据∆=b2-4ac,求出∆的值,然后根据∆的值与一元二次方程根的关系判断即可.
【详解】
∵a=3,b=-6,c=4,
∴∆=b2-4ac=(-6)2-4×3×4=-12<0,
∴方程3x2-6x+4=0没有实数根.
故选D.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
6、A
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据.
【详解】
解:这组数据中,出现的次数最多,故众数为,
共有30人,
第15和16人身高的平均数为中位数,
即中位数为:,
故选:A.
【点睛】
本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大或从大到小的顺序排列,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
7、B
【解析】
根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可.
【详解】
解:由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥-3,
A、不等式组的解集为x>-3,故A错误;
B、不等式组的解集为x≥-3,故B正确;
C、不等式组的解集为x<-3,故C错误;
D、不等式组的解集为-3<x<5,故D错误.
故选B.
【点睛】
本题考查的是在数轴上表示一元一次不等式组的解集,根据题意得出数轴上不等式组的解集是解答此题的关键.
8、A
【解析】
根据平行线的性质及圆周角定理的推论得出点M的轨迹是以EF为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论.
【详解】
当点D与B重合时,M与F重合,当点D与A重合时,M与E重合,连接BD,FM,AD,EM,
∵
∴
∵AB是直径
即
∴
∴点M的轨迹是以EF为直径的半圆,
∵
∴以EF为直径的圆的半径为1
∴点M运动的路径长为
当 时,同理可得点M运动的路径长为
故选:A.
【点睛】
本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键.
9、B
【解析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
详解:A、调查范围广适合抽样调查,故A不符合题意;
B、适合普查,故B符合题意;
C、调查范围广适合抽样调查,故C不符合题意;
D、调查范围广适合抽样调查,故D不符合题意;
故选:B.
点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
10、A
【解析】
试题解析:由于点A、B在反比例函数图象上关于原点对称,
则△ABC的面积=2|k|=2×4=1.
故选A.
考点:反比例函数系数k的几何意义.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、84.2
【解析】
小青该学期的总评成绩为:86×10%+90×30%+81×60%=84.2(分),故答案为: 84.2.
12、.
【解析】
找出从C,D,E,F,G五个点中任意取一点组成等腰三角形的个数,再根据概率公式即可得出结论.
【详解】
∵从C,D,E,F,G五个点中任意取一点共有5种情况,其中A、B、C;A、B、F两种取法,可使这三定组成等腰三角形,
∴所画三角形时等腰三角形的概率是,
故答案是:.
【点睛】
考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.
13、1
【解析】
解:如图.∵在Rt△ABC中(∠C=90°),放置边长分别2,3,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF.∵EF=x,MO=2,PN=3,∴OE=x﹣2,PF=x﹣3,∴(x﹣2):3=2:(x﹣3),∴x=0(不符合题意,舍去),x=1.故答案为1.
点睛:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边是解题的关键.
14、30°
【解析】
分别过A、B作l1的平行线AC和BD,则可知AC∥BD∥l1∥l2,再利用平行线的性质求得答案.
【详解】
如图,分别过A、B作l1的平行线AC和BD,
∵l1∥l2,
∴AC∥BD∥l1∥l2,
∴∠1=∠EAC,∠2=∠FBD,∠CAB+∠DBA=180°,
∵∠EAB+∠FBA=125°+85°=210°,
∴∠EAC+∠CAB+∠DBA+∠FBD=210°,
即∠1+∠2+180°=210°,
∴∠1+∠2=30°,
故答案为30°.
【点睛】
本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.
15、25
【解析】
利用平方根定义即可求出这个数.
【详解】
设这个数是x(x≥0),所以x=(-5)2=25.
【点睛】
本题解题的关键是掌握平方根的定义.
16、(x+y+z)(x﹣y﹣z).
【解析】
当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题后三项可以为一组组成完全平方式,再用平方差公式即可.
【详解】
x2-y2-z2-2yz,
=x2-(y2+z2+2yz),
=x2-(y+z)2,
=(x+y+z)(x-y-z).
故答案为(x+y+z)(x-y-z).
【点睛】
本题考查了用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题后三项可组成完全平方公式,可把后三项分为一组.
三、解答题(共8题,共72分)
17、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析
【解析】
解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:
,解得:。
答:每台电脑0.5万元,每台电子白板1.5万元。
(2)设需购进电脑a台,则购进电子白板(30-a)台,
则,解得:,即a=15,16,17。
故共有三种方案:
方案一:购进电脑15台,电子白板15台.总费用为万元;
方案二:购进电脑16台,电子白板14台.总费用为万元;
方案三:购进电脑17台,电子白板13台.总费用为万元。
∴方案三费用最低。
(1)设电脑、电子白板的价格分别为x,y元,根据等量关系:“1台电脑+2台电子白板=3.5万元”,“2台电脑+1台电子白板=2.5万元”,列方程组求解即可。
(2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解。设购进电脑x台,电子白板有(30-x)台,然后根据题目中的不等关系“总费用不超过30万元,但不低于28万元”列不等式组解答。
18、简答:∵OA,
OB=OC=1500,
∴AB=(m).
答:隧道AB的长约为635m.
【解析】
试题分析:首先过点C作CO⊥AB,根据Rt△AOC求出OA的长度,根据Rt△CBO求出OB的长度,然后进行计算.
试题解析:如图,过点C作CO⊥直线AB,垂足为O,则CO="1500m"
∵BC∥OB ∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°
∴在Rt△CAO 中,OA==1500×=500m
在Rt△CBO 中,OB=1500×tan45°=1500m
∴AB=1500-500≈1500-865=635(m)
答:隧道AB的长约为635m.
考点:锐角三角函数的应用.
19、1台大收割机和1台小收割机每小时各收割小麦0.4hm2和0.2hm2.
【解析】
此题可设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,根据题中的等量关系列出二元一次方程组解答即可
【详解】
设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷
根据题意可得
解得
答:每台大小收割机每小时分别收割0.4公顷和0.2公顷.
【点睛】
此题主要考查了二元一次方程组的实际应用,解题关键在于弄清题意,找到合适的等量关系
20、(1)10, 1;(2)快车速度是2千米/小时;(3)从两车相遇到快车到达甲地时y与x之间的函数关系式为y=150x﹣10;(4)当x=2小时或x=4小时时,两车相距300千米.
【解析】
(1)由当x=0时y=10可得出甲乙两地间距,再利用速度=两地间距÷慢车行驶的时间,即可求出慢车的速度;
(2)设快车的速度为a千米/小时,根据两地间距=两车速度之和×相遇时间,即可得出关于a的一元一次方程,解之即可得出结论;
(3)分别求出快车到达甲地的时间及快车到达甲地时两车之间的间距,根据函数图象上点的坐标,利用待定系数法即可求出该函数关系式;
(4)利用待定系数法求出当0≤x≤4时y与x之间的函数关系式,将y=300分别代入0≤x≤4时及4≤x≤时的函数关系式中求出x值,此题得解.
【详解】
解:(1)∵当x=0时,y=10,
∴甲乙两地相距10千米.
10÷10=1(千米/小时).
故答案为10;1.
(2)设快车的速度为a千米/小时,
根据题意得:4(1+a)=10,
解得:a=2.
答:快车速度是2千米/小时.
(3)快车到达甲地的时间为10÷2=(小时),
当x=时,两车之间的距离为1×=400(千米).
设当4≤x≤时,y与x之间的函数关系式为y=kx+b(k≠0),
∵该函数图象经过点(4,0)和(,400),
∴,解得:,
∴从两车相遇到快车到达甲地时y与x之间的函数关系式为y=150x﹣10.
(4)设当0≤x≤4时,y与x之间的函数关系式为y=mx+n(m≠0),
∵该函数图象经过点(0,10)和(4,0),
∴,解得:,
∴y与x之间的函数关系式为y=﹣150x+10.
当y=300时,有﹣150x+10=300或150x﹣10=300,
解得:x=2或x=4.
∴当x=2小时或x=4小时时,两车相距300千米.
【点睛】
本题考查了待定系数法求一次函数解析式、一元一次方程的应用以及一次函数图象上点的坐标特征,解题的关键是:(1)利用速度=两地间距÷慢车行驶的时间,求出慢车的速度;(2)根据两地间距=两车速度之和×相遇时间,列出关于a的一元一次方程;(3)根据点的坐标,利用待定系数法求出函数关系式;(4)利用一次函数图象上点的坐标特征求出当y=300时x的值.
21、(1)90°;(1)AE1+EB1=AC1,证明见解析.
【解析】
(1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EB=EC,根据等腰三角形的性质、三角形内角和定理计算即可;
(1)根据勾股定理解答.
【详解】
解:(1)∵点D是BC边的中点,DE⊥BC,
∴DE是线段BC的垂直平分线,
∴EB=EC,
∴∠ECB=∠B=45°,
∴∠AEC=∠ECB+∠B=90°;
(1)AE1+EB1=AC1.
∵∠AEC=90°,
∴AE1+EC1=AC1,
∵EB=EC,
∴AE1+EB1=AC1.
【点睛】
本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
22、(1)点P在直线上,说明见解析;(2).
【解析】
解:(1) 求:(1)直线可变为,
说明点P在直线上;
(2)在直线上取一点(0,1),直线可变为
则,
∴这两条平行线的距离为.
23、这项工程的规定时间是83天
【解析】
依据题意列分式方程即可.
【详解】
设这项工程的规定时间为x天,根据题意得 .
解得x=83.
检验:当x=83时,3x≠0.所以x=83是原分式方程的解.
答:这项工程的规定时间是83天.
【点睛】
正确理解题意是解题的关键,注意检验.
24、(1)小球飞行时间是1s时,小球最高为10m;(1) 1≤t≤3.
【解析】
(1)将函数解析式配方成顶点式可得最值;
(1)画图象可得t的取值.
【详解】
(1)∵h=﹣5t1+10t=﹣5(t﹣1)1+10,
∴当t=1时,h取得最大值10米;
答:小球飞行时间是1s时,小球最高为10m;
(1)如图,
由题意得:15=10t﹣5t1,
解得:t1=1,t1=3,
由图象得:当1≤t≤3时,h≥15,
则小球飞行时间1≤t≤3时,飞行高度不低于15m.
【点睛】
本题考查了二次函数的应用,主要考查了二次函数的最值问题,以及利用二次函数图象求不等式,并熟练掌握二次函数的性质是解题的关键.
相关试卷
这是一份2022-2023学年山东省临沂市兰陵县七年级(下)期中数学试卷(含解析),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年山东省临沂市兰陵县中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022年山东省临沂市兰陵县中考数学二模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。