年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年山东省聊城莘县联考中考数学模拟精编试卷含解析

    2022年山东省聊城莘县联考中考数学模拟精编试卷含解析第1页
    2022年山东省聊城莘县联考中考数学模拟精编试卷含解析第2页
    2022年山东省聊城莘县联考中考数学模拟精编试卷含解析第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东省聊城莘县联考中考数学模拟精编试卷含解析

    展开

    这是一份2022年山东省聊城莘县联考中考数学模拟精编试卷含解析,共17页。试卷主要包含了在数轴上到原点距离等于3的数是,-sin60°的倒数为,估计+1的值在等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.若分式有意义,则的取值范围是( )
    A.; B.; C.; D..
    2.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为( )

    A. B.π C. D.3
    3.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为(  )

    A.2π B.4π C.5π D.6π
    4.在数轴上到原点距离等于3的数是( )
    A.3 B.﹣3 C.3或﹣3 D.不知道
    5.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设Pn(xn,yn),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为(  )

    A.1 B.3 C.﹣1 D.2019
    6.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是(  )
    A.a>0 B.a=0 C.c>0 D.c=0
    7.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是(  )

    A.∠DAC=∠ABC B.AC是∠BCD的平分线 C.AC2=BC•CD D.
    8.-sin60°的倒数为( )
    A.-2 B. C.- D.-
    9.如图,PA、PB切⊙O于A、B两点,AC是⊙O的直径,∠P=40°,则∠ACB度数是(  )

    A.50° B.60° C.70° D.80°
    10.估计+1的值在(  )
    A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,平行线AB、CD被直线EF所截,若∠2=130°,则∠1=_____.

    12.分解因式______.
    13.瑞士的一位中学教师巴尔末从光谱数据,…中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门.请你根据这个规律写出第9个数_____.
    14.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:






    1′05″33
    1′04″26
    1′04″26
    1′07″29
    s2
    1.1
    1.1
    1.3
    1.6
    如果选拔一名学生去参赛,应派_________去.
    15.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是_____.

    16.若2a﹣b=5,a﹣2b=4,则a﹣b的值为________.
    三、解答题(共8题,共72分)
    17.(8分)程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?
    18.(8分)如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.

    (1)求证:DB为⊙O的切线;(2)若AD=1,PB=BO,求弦AC的长.
    19.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.求证:△ADE∽△ABC;若AD=3,AB=5,求的值.

    20.(8分)已知一次函数y=x+1与抛物线y=x2+bx+c交A(m,9),B(0,1)两点,点C在抛物线上且横坐标为1.
    (1)写出抛物线的函数表达式;
    (2)判断△ABC的形状,并证明你的结论;
    (3)平面内是否存在点Q在直线AB、BC、AC距离相等,如果存在,请直接写出所有符合条件的Q的坐标,如果不存在,说说你的理由.

    21.(8分)观察规律并填空.

    ______(用含n的代数式表示,n 是正整数,且 n ≥ 2)
    22.(10分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.
    (1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;
    (2)求两次摸出的球上的数字和为偶数的概率.
    23.(12分)计算:÷(﹣1)
    24.我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC.(结果精确到0.1米,参考数据:sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.5,≈1.73)




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    分式的分母不为零,即x-2≠1.
    【详解】
    ∵分式有意义,
    ∴x-2≠1,
    ∴.
    故选:B.
    【点睛】
    考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.
    2、B
    【解析】
    ∵四边形AECD是平行四边形,
    ∴AE=CD,
    ∵AB=BE=CD=3,
    ∴AB=BE=AE,
    ∴△ABE是等边三角形,
    ∴∠B=60°,
    ∴的弧长=.
    故选B.
    3、B
    【解析】
    连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.
    【详解】
    连接OA、OC,
    ∵∠ADC=60°,
    ∴∠AOC=2∠ADC=120°,
    则劣弧AC的长为: =4π.
    故选B.

    【点睛】
    本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式 .
    4、C
    【解析】
    根据数轴上到原点距离等于3的数为绝对值是3的数即可求解.
    【详解】
    绝对值为3的数有3,-3.故答案为C.
    【点睛】
    本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值.
    5、C
    【解析】
    根据各点横坐标数据得出规律,进而得出x +x +…+x ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果.
    【详解】
    解:根据平面坐标系结合各点横坐标得出:x1、x2、x3、x4、x5、x6、x7、x8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5;
    ∴x1+x2+…+x7=﹣1
    ∵x1+x2+x3+x4=1﹣1﹣1+3=2;
    x5+x6+x7+x8=3﹣3﹣3+5=2;

    x97+x98+x99+x100=2…
    ∴x1+x2+…+x2016=2×(2016÷4)=1.
    而x2017、x2018、x2019的值分别为:1009、﹣1009、﹣1009,
    ∴x2017+x2018+x2019=﹣1009,
    ∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,
    故选C.
    【点睛】
    此题主要考查规律型:点的坐标,解题关键在于找到其规律
    6、D
    【解析】
    试题分析:根据题意得a≠1且△=,解得且a≠1.观察四个答案,只有c=1一定满足条件,故选D.
    考点:根的判别式;一元二次方程的定义.
    7、C
    【解析】
    结合图形,逐项进行分析即可.
    【详解】
    在△ADC和△BAC中,∠ADC=∠BAC,
    如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;
    ②,
    故选C.
    【点睛】
    本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.
    8、D
    【解析】
    分析:根据乘积为1的两个数互为倒数,求出它的倒数即可.
    详解:

    的倒数是.
    故选D.
    点睛:考查特殊角的三角函数和倒数的定义,熟记特殊角的三角函数值是解题的关键.
    9、C
    【解析】
    连接BC,根据题意PA,PB是圆的切线以及可得的度数,然后根据,可得的度数,因为是圆的直径,所以,根据三角形内角和即可求出的度数。
    【详解】
    连接BC.
    ∵PA,PB是圆的切线

    在四边形中,




    所以
    ∵是直径


    故答案选C.

    【点睛】
    本题主要考察切线的性质,四边形和三角形的内角和以及圆周角定理。
    10、B
    【解析】
    分析:直接利用2<<3,进而得出答案.
    详解:∵2<<3,
    ∴3<+1<4,
    故选B.
    点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、50°
    【解析】
    利用平行线的性质推出∠EFC=∠2=130°,再根据邻补角的性质即可解决问题.
    【详解】
    ∵AB∥CD,
    ∴∠EFC=∠2=130°,
    ∴∠1=180°-∠EFC=50°,
    故答案为50°
    【点睛】
    本题考查平行线的性质、邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.
    12、(x+y+z)(x﹣y﹣z).
    【解析】
    当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题后三项可以为一组组成完全平方式,再用平方差公式即可.
    【详解】
    x2-y2-z2-2yz,
    =x2-(y2+z2+2yz),
    =x2-(y+z)2,
    =(x+y+z)(x-y-z).
    故答案为(x+y+z)(x-y-z).
    【点睛】
    本题考查了用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题后三项可组成完全平方公式,可把后三项分为一组.
    13、.
    【解析】
    分子的规律依次是:32,42,52,62,72,82,92…,分母的规律是:规律是:5+7=12 12+9=21 21+11=32 32+13=45…,即分子为(n+2)2,分母为n(n+4).
    【详解】
    解:由题可知规律,第9个数的分子是(9+2)2=121;
    第五个的分母是:32+13=45;第六个的分母是:45+15=60;第七个的分母是:60+17=77;
    第八个的分母是:77+19=96;则第九个的分母是:96+21=1.
    因而第九个数是:.
    故答案为:.
    【点睛】
    主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.
    14、乙
    【解析】
    ∵丁〉甲乙=丙,
    ∴从乙和丙中选择一人参加比赛,
    ∵S 乙2<S 丙2,
    ∴选择乙参赛,
    故答案是:乙.
    15、-3<x<1
    【解析】
    试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.
    解:根据抛物线的图象可知:
    抛物线的对称轴为x=﹣1,已知一个交点为(1,0),
    根据对称性,则另一交点为(﹣3,0),
    所以y>0时,x的取值范围是﹣3<x<1.
    故答案为﹣3<x<1.
    考点:二次函数的图象.
    16、1.
    【解析】
    试题分析:把这两个方程相加可得1a-1b=9,两边同时除以1可得a-b=1.
    考点:整体思想.

    三、解答题(共8题,共72分)
    17、大和尚有25人,小和尚有75人.
    【解析】
    设大和尚有x人,小和尚有y人,根据100个和尚吃100个馒头且1个大和尚分3个、3个小和尚分1个,即可得出关于x,y的二元一次方程组,解之即可得出结论.
    【详解】
    解:设大和尚有x人,小和尚有y人,
    依题意,得:,
    解得:.
    答:大和尚有25人,小和尚有75人.
    【点睛】
    考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
    18、(1)见解析;(2)AC=1.
    【解析】
    (1)要证明DB为⊙O的切线,只要证明∠OBD=90即可.
    (2)根据已知及直角三角形的性质可以得到PD=2BD=2DA=2,再利用等角对等边可以得到AC=AP,这样求得AP的值就得出了AC的长.
    【详解】
    (1)证明:连接OD;
    ∵PA为⊙O切线,
    ∴∠OAD=90°;
    在△OAD和△OBD中,


    ∴△OAD≌△OBD,
    ∴∠OBD=∠OAD=90°,
    ∴OB⊥BD
    ∴DB为⊙O的切线
    (2)解:在Rt△OAP中;
    ∵PB=OB=OA,
    ∴OP=2OA,
    ∴∠OPA=10°,
    ∴∠POA=60°=2∠C,
    ∴PD=2BD=2DA=2,
    ∴∠OPA=∠C=10°,
    ∴AC=AP=1.
    【点睛】
    本题考查了切线的判定及性质,全等三全角形的判定等知识点的掌握情况.
    19、(1)证明见解析;(2).
    【解析】
    (1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;
    (2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可求解.
    【详解】
    (1)∵AG⊥BC,AF⊥DE,
    ∴∠AFE=∠AGC=90°,
    ∵∠EAF=∠GAC,
    ∴∠AED=∠ACB,
    ∵∠EAD=∠BAC,
    ∴△ADE∽△ABC,
    (2)由(1)可知:△ADE∽△ABC,

    由(1)可知:∠AFE=∠AGC=90°,
    ∴∠EAF=∠GAC,
    ∴△EAF∽△CAG,
    ∴,
    ∴=
    考点:相似三角形的判定
    20、(1)y=x2﹣7x+1;(2)△ABC为直角三角形.理由见解析;(3)符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).
    【解析】
    (1)先利用一次函数解析式得到A(8,9),然后利用待定系数法求抛物线解析式;
    (2)先利用抛物线解析式确定C(1,﹣5),作AM⊥y轴于M,CN⊥y轴于N,如图,证明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=8 ,BN=1,从而得到∠ABC=90°,所以△ABC为直角三角形;
    (3)利用勾股定理计算出AC=10 ,根据直角三角形内切圆半径的计算公式得到Rt△ABC的内切圆的半径=2 ,设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,则AI、BI为角平分线,BI⊥y轴,PQ为△ABC的外角平分线,易得y轴为△ABC的外角平分线,根据角平分线的性质可判断点P、I、Q、G到直线AB、BC、AC距离相等,由于BI=×2=4,则I(4,1),接着利用待定系数法求出直线AI的解析式为y=2x﹣7,直线AP的解析式为y=﹣x+13,然后分别求出P、Q、G的坐标即可.
    【详解】
    解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,则A(8,9),
    把A(8,9),B(0,1)代入y=x2+bx+c得,
    解得,
    ∴抛物线解析式为y=x2﹣7x+1;
    故答案为y=x2﹣7x+1;
    (2)△ABC为直角三角形.理由如下:
    当x=1时,y=x2﹣7x+1=31﹣42+1=﹣5,则C(1,﹣5),
    作AM⊥y轴于M,CN⊥y轴于N,如图,
    ∵B(0,1),A(8,9),C(1,﹣5),
    ∴BM=AM=8,BN=CN=1,
    ∴△ABM和△BNC都是等腰直角三角形,
    ∴∠MBA=45°,∠NBC=45°,AB=8,BN=1,
    ∴∠ABC=90°,
    ∴△ABC为直角三角形;
    (3)∵AB=8,BN=1,
    ∴AC=10,
    ∴Rt△ABC的内切圆的半径=,
    设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,
    ∵I为△ABC的内心,
    ∴AI、BI为角平分线,
    ∴BI⊥y轴,
    而AI⊥PQ,
    ∴PQ为△ABC的外角平分线,
    易得y轴为△ABC的外角平分线,
    ∴点I、P、Q、G为△ABC的内角平分线或外角平分线的交点,
    它们到直线AB、BC、AC距离相等,
    BI=×2=4,
    而BI⊥y轴,
    ∴I(4,1),
    设直线AI的解析式为y=kx+n,
    则,
    解得,
    ∴直线AI的解析式为y=2x﹣7,
    当x=0时,y=2x﹣7=﹣7,则G(0,﹣7);
    设直线AP的解析式为y=﹣x+p,
    把A(8,9)代入得﹣4+n=9,解得n=13,
    ∴直线AP的解析式为y=﹣x+13,
    当y=1时,﹣x+13=1,则P(24,1)
    当x=0时,y=﹣x+13=13,则Q(0,13),
    综上所述,符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).

    【点睛】
    本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、角平分线的性质和三角形内心的性质;会利用待定系数法求函数解析式;理解坐标与图形性质是解题的关键.
    21、
    【解析】
    由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣)和(1+)相乘得出结果.
    【详解】

    =
    =
    =.
    故答案为:.
    【点睛】
    本题考查了算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.
    22、(1)画树状图得:

    则共有9种等可能的结果;
    (2)两次摸出的球上的数字和为偶数的概率为:.
    【解析】
    试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;
    (2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案.
    试题解析:(1)画树状图得:

    则共有9种等可能的结果;
    (2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,
    ∴两次摸出的球上的数字和为偶数的概率为:.
    考点:列表法与树状图法.
    23、
    【解析】
    根据分式的混合运算法则把原式进行化简即可.
    【详解】
    原式=÷(﹣)

    =•
    =.
    【点睛】
    本题考查的是分式的混合运算,熟知分式的混合运算的法则是解答此题的关键.
    24、工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.
    【解析】
    解:在Rt△BAE中,∠BAE=680,BE=162米,∴(米).
    在Rt△DEC中,∠DGE=600,DE=176.6米,∴(米).
    ∴(米).
    ∴工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.
    在Rt△BAE和Rt△DEC中,应用正切函数分别求出AE和CE的长即可求得AC的长.

    相关试卷

    2023年山东省聊城市莘县中考数学三模试卷(含解析):

    这是一份2023年山东省聊城市莘县中考数学三模试卷(含解析),共27页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2022年山东省莘县联考中考数学模拟预测试卷含解析:

    这是一份2022年山东省莘县联考中考数学模拟预测试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,一元二次方程的根是等内容,欢迎下载使用。

    2022届山东省聊城莘县联考中考数学考前最后一卷含解析:

    这是一份2022届山东省聊城莘县联考中考数学考前最后一卷含解析,共16页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map