人教B版 (2019)必修 第二册5.3.3 古典概型教学设计
展开古典概型
【教学目标】
1.能说出古典概型的两大特点:
试验中所有可能出现的基本事件只有有限个;
每个基本事件出现的可能性相等;
2.会应用古典概型的概率计算公式:P(A)=
3.会叙述求古典概型的步骤;
【教学重点】
正确理解掌握古典概型及其概率公式
【教学难点】
会用列举法计算一些随机事件所含的基本事件数及事件发生的概率
【教学过程】
一、前置测评
1.两个事件之间的关系包括包含事件、相等事件、互斥事件、对立事件,事件之间的运算包括和事件、积事件,这些概念的含义分别如何?
若事件A发生时事件B一定发生,则 。
若事件A发生时事件B一定发生,反之亦然,则A=B.若事件A与事件B不同时发生,则A与B互斥。若事件A与事件B有且只有一个发生,则A与B相互对立。
2.概率的加法公式是什么?对立事件的概率有什么关系?
若事件A与事件B互斥,则 P(A+B)=P(A)+P(B)。
若事件A与事件B相互对立,则 P(A)+P(B)=1.
3.通过试验和观察的方法,可以得到一些事件的概率估计,但这种方法耗时多,操作不方便,并且有些事件是难以组织试验的。因此,我们希望在某些特殊条件下,有一个计算事件概率的通用方法。
二、新知探究
我们再来分析事件的构成,考察两个试验:
(1)掷一枚质地均匀的硬币的试验。
(2)掷一枚质地均匀的骰子的试验。
有哪几种可能结果?
在试验(1)中结果只有两个,即“正面朝上”或“反面朝上”它们都是随机的;在试验(2)中所有可能的试验结果只有6个,即出现“1点”“2点”“3点”“4点”“5点”“6点”它们也都是随机事件。我们把这类随机事件称为基本事件
综上分析,基本事件有哪两个特征?
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。
例1:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?
分析:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果都列出来。
解:所求的基本事件有6个:A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d};A+B+C.
上述试验和例1的共同特点是:
(1)试验中有可能出现的基本事件只有有限个;
(2)每个基本事件出现的可能性相等,
这有我们将具有这两个特点的概率模型称为古典概率模型
思考1:抛掷一枚质地均匀的骰子有哪些基本事件?每个基本事件出现的可能性相等吗?
思考2:抛掷一枚质地不均匀的硬币有哪些基本事件?每个基本事件出现的可能性相等吗?
思考3:从所有整数中任取一个数的试验中,其基本事件有多少个?无数个
思考4:随机抛掷一枚质地均匀的骰子,利用基本事件的概率值和概率加法公式,“出现偶数点”的概率如何计算?“出现不小于2点” 的概率如何计算?
思考5:考察抛掷一枚质地均匀的骰子的基本事件总数,与“出现偶数点”、“出现不小于2点”所包含的基本事件的个数之间的关系,你有什么发现?
P(“出现偶数点”)=“出现偶数点”所包含的基本事件的个数÷基本事件的总数;
P(“出现不小于2点”)=“出现不小于2点”所包含的基本事件的个数÷基本事件的总数。
思考6:一般地,对于古典概型,事件A在一次试验中发生的概率如何计算?
P(A)=事件A所包含的基本事件的个数÷基本事件的总数
典型例题
例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?
解:这是一个古典概型,因为试验的可能结果只有4个:选择A.选择B.选择C.选择D,即基本事件共有4个,考生随机地选择一个答案是指选择A,B,C,D的可能性是相等的。
由古典概型的概率计算公式得P(“答对”)=1/4=0.25
点评:在4个答案中随机地选一个符合了古典概型的特点。
变式训练:在标准化的考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有的正确答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?
例3 同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
解:(1)掷一个骰子的结果有6种。把两个骰子标上记号1,2以便区分,由于1号投骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,因此同时掷两个骰子的结果共有36种。
(2)在上面的所有结果中,向上点数和为5的结果有如下4种
(1,4),(2,3),(3,2),(4,1)
(3)由古典概型概率计算公式得
P(“向上点数之和为5”)=4/36=1/9
点评:通过本题理解掷两颗骰子共有36种结果
变式训练:一枚骰子抛两次,第一次的点数记为m ,第二次的点数记为n ,计算m-n<2的概率。
例4 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个。假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?
解:一个密码相当于一个基本事件,总共有10000个基本事件,它们分别是0000,0001,0002,…
9998,9999.随机地试密码,相当于试到任何一个密码的可能性都时相等的,所以这是一个古典概型。事件“试一次密码就能取到钱”有一个基本事件构成,即由正确的密码构成。所以
P(“试一次密码就能取到钱”)=1/10000
点评:这是一个小概率事件在实际生活中的应用。
变式训练:在所有首位不为0的八位电话号码中,任取一个号码。求:头两位数码都是8的概率。
例5 某种饮料每箱装6听,如果其中有2听不合格,质检人员依次不放回从某箱中随机抽出2听,求检测出不合格产品的概率。
解:合格的4听分别记作:1,2,3,4,不合格的2听分别记作:a,b,只要检测的2听有1听不合格的,就表示查处了不合格产品。
依次不放回的取2听饮料共有如下30个基本事件:
(1,2),(1,3),(1,4),(1,a),(1,b),(2,1),(2,3),(2,4),(2,a),(2,b),(3,1),(3,2),(3,4),(3,a),(3,b),(4,1),(4,2),(4,3),(4,a),(4,b),(a,1),(a,2),(a,3),(a,4),(a,b),(b,1),(b,2),(b,3),(b,4),(b,a)
P(“含有不合格产品”)=18/30=0.6
点评:本题的关键是对依次不放回抽取总共列多少基本事件的考查。
变式训练:
一个盒子里装有标号为1,2,3,4,5的5张标签,根据下列条件求两张标签上的数字为相邻整数的概率:
标签的选取是无放回的:
标签的选取是有放回的:
归纳小结
1.基本事件是一次试验中所有可能出现的最小事件,且这些事件彼此互斥。试验中的事件A可以是基本事件,也可以是有几个基本事件组合而成的。
2.有限性和等可能性是古典概型的两个本质特点,概率计算公式P(A)=事件A所包含的基本事件的个数÷基本事件的总数,只对古典概型适用
反馈测评
1.在20瓶饮料中,有2瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率是多少?
2.在夏令营的7名成员中,有3名同学已去过北京。从这7名同学中任取两名同学,选出的这两名同学恰是已去过北京的概率是多少?
3.5本不同的语文书,4本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率为多少?
【板书设计】
【作业布置】
2020-2021学年5.3.3 古典概型教案: 这是一份2020-2021学年5.3.3 古典概型教案,共4页。教案主要包含了教学目标,教学重点,教学难点,教学过程,第一课时,作业布置等内容,欢迎下载使用。
高中人教B版 (2019)5.3.3 古典概型教案及反思: 这是一份高中人教B版 (2019)5.3.3 古典概型教案及反思,共5页。教案主要包含了三维目标, 教学重点与难点,教法与学法分析,教学基本流程,教学设计,板书设计,教学反思等内容,欢迎下载使用。
人教B版 (2019)必修 第二册5.3.3 古典概型教案: 这是一份人教B版 (2019)必修 第二册5.3.3 古典概型教案,共4页。教案主要包含了教学目标,教学重难点,教学准备,教学过程等内容,欢迎下载使用。