2020-2021学年5.3.3 古典概型教案
展开古典概型
【教学目标】
1.能说出古典概型的两大特点:
(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件出现的可能性相等;
2.会应用古典概型的概率计算公式:P(A)=
【教学重点】
正确理解掌握古典概型及其概率公式
【教学难点】
会用列举法计算一些随机事件所含的基本事件数及事件发生的概率
【教学过程】
【第一课时】
一、复习引入
通过试验和观察的方法,可以得到一些事件的概率估计,但这种方法耗时多,操作不方便,并且有些事件是难以组织试验的。因此,我们希望在某些特殊条件下,有一个计算事件概率的通用方法。
新知探究
我们再来分析事件的构成,考察两个试验:
(1)掷一枚质地均匀的硬币的试验。
(2)掷一枚质地均匀的骰子的试验。
问题一 根据以前的学习,上述两个试验有哪几种可能结果?
在试验(1)中结果只有两个,即“正面朝上”或“反面朝上”它们都是随机的;在试验(2)中所有可能的试验结果只有6个,即出现“1点”“2点”“3点”“4点”“5点”“6点”它们也都是随机事件。我们把这类随机事件称为基本事件
问题二 基本事件有哪两个特征?
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。
特点(2)的理解:在试验一中,必然事件由基本事件“正面朝上”和“反面朝上”组成;在试验二中,随机事件“出现偶数点”可以由基本事件“2点”、“4点”和“6点”共同组成。
问题三 观察对比两个试验有什么共同特点?(从结果数和结果之间的关系来看)
试验一中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等。
试验二中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等。两个试验的共同特点:
(1)试验中有可能出现的基本事件只有有限个;(有限性)
(2)每个基本事件出现的可能性相等。(等可能性)
这有我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。
思考交流:
(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?
答:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。
(2)在掷一枚质地均匀的骰子的试验中,某同学认为这一试验的结果只有有限个:“出现一点”、“不出现一点 ” 你认为这是古典概型吗?为什么?
答:不是古典概型,因为试验的所有可能结果只有2个,而 事件“出现一点”和“不出现一点 ” 的出现不是等可能的,即不满足古典概型的第二个条件。
问题四 在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?
试验一中,出现正面朝上的概率与反面朝上的概率相等,即
P(“正面朝上”)=P(“反面朝上”)
由概率的加法公式,得P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1
因此 P(“正面朝上”)=P(“反面朝上”)=
即
试验二中,出现各个点的概率相等,即P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)
反复利用概率的加法公式,我们有P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1
所以P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=
进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,
例如,P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)=++==
即
P(“出现不大于5点”)= P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)=
根据上述两则模拟试验,可以概括总结出,古典概型计算任何事件的概率计算公式为:
典型例题
例1从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?
分析:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果都列出来。
解:所求的基本事件有6个:A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d};
变式训练:出现字母“d”的概率是多少?
解析:出现字母“d”的概率为:
例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?
分析:解决这个问题的关键,即讨论这个问题什么情况下可以看成古典概型。如果考生掌握或者掌握了部分考察内容,这都不满足古典概型的第2个条件——等可能性,因此,只有在假定考生不会做,随机地选择了一个答案的情况下,才可以化为古典概型。
解:这是一个古典概型,因为试验的可能结果只有4个:选择A.选择B.选择C.选择D,即基本事件共有4个,考生随机地选择一个答案是指选择A,B,C,D的可能性是相等的。
由古典概型的概率计算公式得P(“答对”)=1/4=0.25
点评:在4个答案中随机地选一个符合了古典概型的特点。
课后探究:在标准化的考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有的正确答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?
归纳小结
1.古典概型:
(1)试验中所有可能出现的基本事件只有有限个;(有限性)
(2)每个基本事件出现的可能性相等。(等可能性)
2.古典概型计算任何事件的概率计算公式为:
3.求某个随机事件A包含的基本事件的个数和实验中基本事件的总数常用的方法是列举法(画树状图和列表),注意做到不重不漏。要注意利用数形结合、建立模型、符号化、形式化等数学思想解题
【作业布置】
1.在20瓶饮料中,有2瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率是多少?
2.在夏令营的7名成员中,有3名同学已去过北京。从这7名同学中任取两名同学,选出的这两名同学恰是已去过北京的概率是多少?
3.5本不同的语文书,4本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率为多少?
高中人教B版 (2019)5.3.3 古典概型教案: 这是一份高中人教B版 (2019)5.3.3 古典概型教案,共5页。教案主要包含了学情分析,教学目标,教学重点,教学难点,教学突破点,教法、学法设计,课前准备,教学过程设计等内容,欢迎下载使用。
高中人教B版 (2019)5.3.3 古典概型教案及反思: 这是一份高中人教B版 (2019)5.3.3 古典概型教案及反思,共5页。教案主要包含了三维目标, 教学重点与难点,教法与学法分析,教学基本流程,教学设计,板书设计,教学反思等内容,欢迎下载使用。
人教B版 (2019)必修 第二册5.3.3 古典概型教案: 这是一份人教B版 (2019)必修 第二册5.3.3 古典概型教案,共4页。教案主要包含了教学目标,教学重难点,教学准备,教学过程等内容,欢迎下载使用。