2022年浙江省嘉兴市桐乡重点名校十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若kb<0,则一次函数的图象一定经过( )
A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限
2.一元二次方程(x+3)(x-7)=0的两个根是
A.x1=3,x2=-7 B.x1=3,x2=7
C.x1=-3,x2=7 D.x1=-3,x2=-7
3.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程( )
A.10%x=330 B.(1﹣10%)x=330
C.(1﹣10%)2x=330 D.(1+10%)x=330
4.已知是一个单位向量,、是非零向量,那么下列等式正确的是( )
A. B. C. D.
5.下列立体图形中,主视图是三角形的是( )
A. B. C. D.
6.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是( )
A. B. C. D.
7.花园甜瓜是乐陵的特色时令水果.甜瓜一上市,水果店的小李就用3000元购进了一批甜瓜,前两天以高于进价40%的价格共卖出150kg,第三天她发现市场上甜瓜数量陡增,而自己的甜瓜卖相已不大好,于是果断地将剩余甜瓜以低于进价20%的价格全部售出,前后一共获利750元,则小李所进甜瓜的质量为( )kg.
A.180 B.200 C.240 D.300
8.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是( )
A.130° B.120° C.110° D.100°
9.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为( )
A.1个 B.2个 C.3个 D.4个
10.下列运算正确的是( )
A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2•x﹣3=x﹣1
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=cm,则EF+CF的长为 cm.
12.某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是_____.
13.计算:________.
14.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_____(填“甲”或“乙”).
15.如图,在△ACB中,∠ACB=90°,点D为AB的中点,将△ACB绕点C按顺时针方向旋转,当CB经过点D时得到△A1CB1.若AC=6,BC=8,则DB1的长为________.
16.如图是一个几何体的三视图(图中尺寸单位:),根据图中数据计算,这个几何体的表面积为__________.
17.计算:2cos60°-+(5-π)°=____________.
三、解答题(共7小题,满分69分)
18.(10分)为营造浓厚的创建全国文明城市氛围,东营市某中学委托制衣厂制作“最美东营人”和“最美志愿者”两款文化衫.若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需145元.
(1)求“最美东营人”和“最美志愿者”两款文化衫每件各多少元?
(2)若该中学要购进“最美东营人”和“最美志愿者”两款文化衫共90件,总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,那么该中学有哪几种购买方案?
19.(5分)如图1,正方形ABCD的边长为4,把三角板的直角顶点放置BC中点E处,三角板绕点E旋转,三角板的两边分别交边AB、CD于点G、F.
(1)求证:△GBE∽△GEF.
(2)设AG=x,GF=y,求Y关于X的函数表达式,并写出自变量取值范围.
(3)如图2,连接AC交GF于点Q,交EF于点P.当△AGQ与△CEP相似,求线段AG的长.
20.(8分)小强想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道I上某一观测点M处,测得亭A在点M的北偏东30°,亭B在点M的北偏东60°,当小明由点M沿小道I向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小强计算湖中两个小亭A、B之间的距离.
21.(10分)(2016山东省烟台市)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)
22.(10分)如图,Rt△ABC的两直角边AC边长为4,BC边长为3,它的内切圆为⊙O,⊙O与边AB、BC、AC分别相切于点D、E、F,延长CO交斜边AB于点G.
(1)求⊙O的半径长;
(2)求线段DG的长.
23.(12分)某商场同时购进甲、乙两种商品共200件,其进价和售价如表,
商品名称
甲
乙
进价(元/件)
80
100
售价(元/件)
160
240
设其中甲种商品购进x件,该商场售完这200件商品的总利润为y元.
(1)求y与x的函数关系式;
(2)该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?
(3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若商场保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该商场获得最大利润的进货方案.
24.(14分)计算:2sin60°﹣(π﹣2)0+(__)-1+|1﹣|.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.
【详解】
∵kb<0,
∴k、b异号。
①当k>0时,b<0,此时一次函数y=kx+b的图象经过第一、三、四象限;
②当k<0时,b>0,此时一次函数y=kx+b的图象经过第一、二、四象限;
综上所述,当kb<0时,一次函数y=kx+b的图象一定经过第一、四象限。
故选:D
【点睛】
此题考查一次函数图象与系数的关系,解题关键在于判断图象的位置关系
2、C
【解析】
根据因式分解法直接求解即可得.
【详解】
∵(x+3)(x﹣7)=0,
∴x+3=0或x﹣7=0,
∴x1=﹣3,x2=7,
故选C.
【点睛】
本题考查了解一元二次方程——因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键.
3、D
【解析】
解:设上个月卖出x双,根据题意得:(1+10%)x=1.故选D.
4、B
【解析】
长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.
【详解】
A. 由于单位向量只限制长度,不确定方向,故错误;
B. 符合向量的长度及方向,正确;
C. 得出的是a的方向不是单位向量,故错误;
D. 左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.
故答案选B.
【点睛】
本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.
5、A
【解析】
考查简单几何体的三视图.根据从正面看得到的图形是主视图,可得图形的主视图
【详解】
A、圆锥的主视图是三角形,符合题意;
B、球的主视图是圆,不符合题意;
C、圆柱的主视图是矩形,不符合题意;
D、正方体的主视图是正方形,不符合题意.
故选A.
【点睛】
主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看
6、B.
【解析】
试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:,故选B.
考点:由实际问题抽象出一元二次方程.
7、B
【解析】
根据题意去设所进乌梅的数量为,根据前后一共获利元,列出方程,求出x值即可.
【详解】
解:设小李所进甜瓜的数量为,根据题意得:
,
解得:,
经检验是原方程的解.
答:小李所进甜瓜的数量为200kg.
故选:B.
【点睛】
本题考查的是分式方程的应用,解题关键在于对等量关系的理解,进而列出方程即可.
8、D
【解析】
分析:先根据圆内接四边形的性质得到 然后根据圆周角定理求
详解:∵
∴
∴
故选D.
点睛:考查圆内接四边形的性质, 圆周角定理,掌握圆内接四边形的对角互补是解题的关键.
9、C
【解析】
根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.
【详解】
解:在同一平面内,
①过两点有且只有一条直线,故①正确;
②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;
③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;
④经过直线外一点有且只有一条直线与已知直线平行,故④正确,
综上所述,正确的有①③④共3个,
故选C.
【点睛】
本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.
10、D
【解析】
分析:根据合并同类项法则,同底数幂相除,积的乘方的性质,同底数幂相乘的性质,逐一判断即可.
详解:根据合并同类项法则,可知x3+x3=2x3,故不正确;
根据同底数幂相除,底数不变指数相加,可知a6÷a2=a4,故不正确;
根据积的乘方,等于各个因式分别乘方,可知(-3a3)2=9a6,故不正确;
根据同底数幂相乘,底数不变指数相加,可得x2•x﹣3=x﹣1,故正确.
故选D.
点睛:此题主要考查了整式的相关运算,是一道综合性题目,熟练应用整式的相关性质和运算法则是解题关键.
二、填空题(共7小题,每小题3分,满分21分)
11、5
【解析】
分析:∵AF是∠BAD的平分线,∴∠BAF=∠FAD.
∵ABCD中,AB∥DC,∴∠FAD =∠AEB.∴∠BAF=∠AEB.
∴△BAE是等腰三角形,即BE=AB=6cm.
同理可证△CFE也是等腰三角形,且△BAE∽△CFE.
∵BC= AD=9cm,∴CE=CF=3cm.∴△BAE和△CFE的相似比是2:1.
∵BG⊥AE, BG=cm,∴由勾股定理得EG=2cm.∴AE=4cm.∴EF=2cm.
∴EF+CF=5cm.
12、
【解析】
通过找到临界值解决问题.
【详解】
由题意知,令3x-1=x,
x=,此时无输出值
当x>时,数值越来越大,会有输出值;
当x<时,数值越来越小,不可能大于10,永远不会有输出值
故x≤,
故答案为x≤.
【点睛】
本题考查不等式的性质,解题的关键是理解题意,学会找到临界值解决问题.
13、
【解析】
根据二次根式的运算法则先算乘法,再将分母有理化,然后相加即可.
【详解】
解:原式=
=
【点睛】
本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
14、甲.
【解析】
乙所得环数的平均数为:=5,
S2=[+++…+]
=[++++]
=16.4,
甲的方差<乙的方差,所以甲较稳定.
故答案为甲.
点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.
15、2
【解析】
根据勾股定理可以得出AB的长度,从而得知CD的长度,再根据旋转的性质可知BC=B1C,从而可以得出答案.
【详解】
∵在△ACB中,∠ACB=90°,AC=6,BC=8,
∴,
∵点D为AB的中点,
∴,
∵将△ACB绕点C按顺时针方向旋转,当CB经过点D时得到△A1CB1.
∴CB1=BC=8,
∴DB1=CB1-CD=8﹣5=2,
故答案为:2.
【点睛】
本题考查的是勾股定理、直角三角形斜边中点的性质和旋转的性质,能够根据勾股定理求出AB的长是解题的关键.
16、
【解析】
分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.
详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;
根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,
故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).
故答案为:16π.
点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
17、1
【解析】
解:原式==1-2+1=1.故答案为1.
三、解答题(共7小题,满分69分)
18、(1)“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)有三种方案,具体见解析.
【解析】
(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,根据若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需11元建立方程组求出其解即可;
(2)设购买“最美东营人”文化衫m件,根据总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,列出不等式组,然后求m的正整数解.
【详解】
(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,
由题意,得
,
解得:
.
答:“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;
(2)设购买“最美东营人”文化衫m件,则购买“最美志愿者”文化衫(90-m)件,
由题意,得,
解得:41<m<1.
∵m是整数,
∴m=42,43,2.
则90-m=48,47,3.
答:方案一:购买“最美东营人”文化衫42件,“最美志愿者”文化衫48件;
方案二:购买“最美东营人”文化衫43件,“最美志愿者”文化衫47件;
方案三:购买“最美东营人”文化衫2件,“最美志愿者”文化衫3件.
【点睛】
本题考查了二元一次方程组的运用,一元一次不等式组的运用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.
19、(1)见解析;(2)y=4﹣x+(0≤x≤3);(3)当△AGQ与△CEP相似,线段AG的长为2或4﹣.
【解析】
(1)先判断出△BEF'≌△CEF,得出BF'=CF,EF'=EF,进而得出∠BGE=∠EGF,即可得出结论;
(2)先判断出△BEG∽△CFE进而得出CF=
,即可得出结论;
(3)分两种情况,①△AGQ∽△CEP时,判断出∠BGE=60°,即可求出BG;
②△AGQ∽△CPE时,判断出EG∥AC,进而得出△BEG∽△BCA即可得出BG,即可得出结论.
【详解】
(1)如图1,延长FE交AB的延长线于F',
∵点E是BC的中点,
∴BE=CE=2,
∵四边形ABCD是正方形,
∴AB∥CD,
∴∠F'=∠CFE,
在△BEF'和△CEF中,
,
∴△BEF'≌△CEF,
∴BF'=CF,EF'=EF,
∵∠GEF=90°,
∴GF'=GF,
∴∠BGE=∠EGF,
∵∠GBE=∠GEF=90°,
∴△GBE∽△GEF;
(2)∵∠FEG=90°,
∴∠BEG+∠CEF=90°,
∵∠BEG+∠BGE=90°,
∴∠BGE=∠CEF,
∵∠EBG=∠C=90°,
∴△BEG∽△CFE,
∴,
由(1)知,BE=CE=2,
∵AG=x,
∴BG=4﹣x,
∴,
∴CF=,
由(1)知,BF'=CF=,
由(1)知,GF'=GF=y,
∴y=GF'=BG+BF'=4﹣x+
当CF=4时,即:=4,
∴x=3,(0≤x≤3),
即:y关于x的函数表达式为y=4﹣x+(0≤x≤3);
(3)∵AC是正方形ABCD的对角线,
∴∠BAC=∠BCA=45°,
∵△AGQ与△CEP相似,
∴①△AGQ∽△CEP,
∴∠AGQ=∠CEP,
由(2)知,∠CEP=∠BGE,
∴∠AGQ=∠BGE,
由(1)知,∠BGE=∠FGE,
∴∠AGQ=∠BGQ=∠FGE,
∴∠AGQ+∠BGQ+∠FGE=180°,
∴∠BGE=60°,
∴∠BEG=30°,
在Rt△BEG中,BE=2,
∴BG=,
∴AG=AB﹣BG=4﹣,
②△AGQ∽△CPE,
∴∠AQG=∠CEP,
∵∠CEP=∠BGE=∠FGE,
∴∠AQG=∠FGE,
∴EG∥AC,
∴△BEG∽△BCA,
∴,
∴,
∴BG=2,
∴AG=AB﹣BG=2,
即:当△AGQ与△CEP相似,线段AG的长为2或4﹣.
【点睛】
本题考核知识点:相似三角形综合. 解题关键点:熟记相似三角形的判定和性质.
20、1m
【解析】
连接AN、BQ,过B作BE⊥AN于点E.在Rt△AMN和在Rt△BMQ中,根据三角函数就可以求得AN,BQ,求得NQ,AE的长,在直角△ABE中,依据勾股定理即可求得AB的长.
【详解】
连接AN、BQ,
∵点A在点N的正北方向,点B在点Q的正北方向,
∴AN⊥l,BQ⊥l,
在Rt△AMN中:tan∠AMN=,
∴AN=1,
在Rt△BMQ中:tan∠BMQ=,
∴BQ=30,
过B作BE⊥AN于点E,
则BE=NQ=30,
∴AE=AN-BQ=30,
在Rt△ABE中,
AB2=AE2+BE2,
AB2=(30)2+302,
∴AB=1.
答:湖中两个小亭A、B之间的距离为1米.
【点睛】
本题考查勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
21、13.1.
【解析】
试题分析:如图,作CM∥AB交AD于M,MN⊥AB于N,根据=,可求得CM的长,在RT△AMN中利用三角函数求得AN的长,再由MN∥BC,AB∥CM,判定四边形MNBC是平行四边形,即可得BN的长,最后根据AB=AN+BN即可求得AB的长.
试题解析:如图作CM∥AB交AD于M,MN⊥AB于N.
由题意=,即=,CM=,
在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,
∴tan72°=,
∴AN≈12.3,
∵MN∥BC,AB∥CM,
∴四边形MNBC是平行四边形,
∴BN=CM=,
∴AB=AN+BN=13.1米.
考点:解直角三角形的应用.
22、 (1) 1;(2)
【解析】
(1)由勾股定理求AB,设⊙O的半径为r,则r=(AC+BC-AB)求解;
(2)过G作GP⊥AC,垂足为P,根据CG平分直角∠ACB可知△PCG为等腰直角三角形,设PG=PC=x,则CG=x,由(1)可知CO=r=,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.
试题解析:(1)在Rt△ABC中,由勾股定理得AB==5,
∴☉O的半径r=(AC+BC-AB)=(4+3-5)=1;
(2)过G作GP⊥AC,垂足为P,设GP=x,
由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,
∴GP=PC=x,
∵Rt△AGP∽Rt△ABC,
∴=,解得x=,
即GP=,CG=,
∴OG=CG-CO=-=,
在Rt△ODG中,DG==.
23、(1)y=﹣60x+28000;(2)若售完这些商品,则商场可获得的最大利润是22000元;(3)商场应购进甲商品120件,乙商品80件,获利最大
【解析】分析:(1)根据总利润=(甲的售价-甲的进价)×购进甲的数量+(乙的售价-乙的进价)×购进乙的数量代入列关系式,并化简即可;(2)根据总成本≤18000列不等式即可求出x的取值,再根据函数的增减性确定其最值问题;(3)把50<a<70分三种情况讨论:一次项x的系数大于0、等于0、小于0,根据函数的增减性得出结论.
详解:
(1)根据题意得:y=(160﹣80)x+(240﹣100)(200﹣x),
=﹣60x+28000,
则y与x的函数关系式为:y=﹣60x+28000;
(2)80x+100(200﹣x)≤18000,
解得:x≥100,
∴至少要购进100件甲商品,
y=﹣60x+28000,
∵﹣60<0,
∴y随x的增大而减小,
∴当x=100时,y有最大值,
y大=﹣60×100+28000=22000,
∴若售完这些商品,则商场可获得的最大利润是22000元;
(3)y=(160﹣80+a)x+(240﹣100)(200﹣x) (100≤x≤120),
y=(a﹣60)x+28000,
①当50<a<60时,a﹣60<0,y随x的增大而减小,
∴当x=100时,y有最大利润,
即商场应购进甲商品100件,乙商品100件,获利最大,
②当a=60时,a﹣60=0,y=28000,
即商场应购进甲商品的数量满足100≤x≤120的整数件时,获利最大,
③当60<a<70时,a﹣60>0,y随x的增大而增大,
∴当x=120时,y有最大利润,
即商场应购进甲商品120件,乙商品80件,获利最大.
点睛:本题是一次函数和一元一次不等式的综合应用,属于销售利润问题,在此类题中,要明确售价、进价、利润的关系式:单件利润=售价-进价,总利润=单个利润×数量;认真读题,弄清题中的每一个条件;对于最值问题,可利用一次函数的增减性来解决:形如y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
24、2+1
【解析】
根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质分别化简各项后,再根据实数的运算法则计算即可求解.
【详解】
原式=-1+3+
= -1+3+
=2+1.
【点睛】
本题主要考查了实数运算,根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质正确化简各数是解题关键.
浙江省嘉兴市南湖区实验2022年十校联考最后数学试题含解析: 这是一份浙江省嘉兴市南湖区实验2022年十校联考最后数学试题含解析,共23页。试卷主要包含了一元二次方程的根的情况是, 1分等内容,欢迎下载使用。
2022届浙江省嘉兴市桐乡重点名校中考数学最后一模试卷含解析: 这是一份2022届浙江省嘉兴市桐乡重点名校中考数学最后一模试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列实数中,最小的数是,方程的解是.,如图,直线与y轴交于点等内容,欢迎下载使用。
2022届云南弥勒市重点名校十校联考最后数学试题含解析: 这是一份2022届云南弥勒市重点名校十校联考最后数学试题含解析,共18页。