年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年浙江省宁波市镇海区仁爱中学中考联考数学试题含解析

    2022年浙江省宁波市镇海区仁爱中学中考联考数学试题含解析第1页
    2022年浙江省宁波市镇海区仁爱中学中考联考数学试题含解析第2页
    2022年浙江省宁波市镇海区仁爱中学中考联考数学试题含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年浙江省宁波市镇海区仁爱中学中考联考数学试题含解析

    展开

    这是一份2022年浙江省宁波市镇海区仁爱中学中考联考数学试题含解析,共19页。试卷主要包含了答题时请按要求用笔,二次函数的最大值为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图所示,在方格纸上建立的平面直角坐标系中,将△ABC绕点O按顺时针方向旋转90°,得到△A′B′O,则点A′的坐标为( )

    A.(3 ,1) B.(3 ,2) C.(2 ,3) D.(1 ,3)
    2.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是(  )
    A.相交 B.相切 C.相离 D.不能确定
    3.-4的相反数是( )
    A. B. C.4 D.-4
    4.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是(  )

    A. B. C. D.
    5.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是(  )
    A.m≥1 B.m≤1 C.m>1 D.m<1
    6.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA=,那么点C的位置可以在( )

    A.点C1处 B.点C2处 C.点C3处 D.点C4处
    7.如图,有5个相同的小立方体搭成的几何体如图所示,则它的左视图是( )

    A. B. C. D.
    8.如图是一个空心圆柱体,其俯视图是( )

    A. B. C. D.
    9.下列图案中,是轴对称图形但不是中心对称图形的是(  )
    A. B. C. D.
    10.二次函数的最大值为( )
    A.3 B.4
    C.5 D.6
    11.如图,BC∥DE,若∠A=35°,∠E=60°,则∠C等于(  )

    A.60° B.35° C.25° D.20°
    12.某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是(  )
    成绩(环)
    7
    8
    9
    10
    次数
    1
    4
    3
    2
    A.8、8 B.8、8.5 C.8、9 D.8、10
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.分解因式:4a3b﹣ab=_____.
    14.如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1= 度.

    15.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣1.例如,1※5=1×5﹣1+5﹣1=ll.请根据上述的定义解决问题:若不等式3※x<1,则不等式的正整数解是_____.
    16.如图是“已知一条直角边和斜边作直角三角形”的尺规作图过程

    已知:线段a、b,
    求作:.使得斜边AB=b,AC=a
    作法:如图.
    (1)作射线AP,截取线段AB=b;
    (2)以AB为直径,作⊙O;
    (3)以点A为圆心,a的长为半径作弧交⊙O于点C;
    (4)连接AC、CB.即为所求作的直角三角形.
    请回答:该尺规作图的依据是______.
    17.函数的自变量的取值范围是 .
    18.方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;求购买一个甲种足球、一个乙种足球各需多少元;2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?
    20.(6分)已知点E是矩形ABCD的边CD上一点,BF⊥AE于点F,求证△ABF∽△EAD.

    21.(6分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图. 
    (1)参加音乐类活动的学生人数为   人,参加球类活动的人数的百分比为 
    (2)请把图2(条形统计图)补充完整; 
    (3)该校学生共600人,则参加棋类活动的人数约为 . 
     (4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率. 

    22.(8分)为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB由西向东行驶.在A处测得岸边一建筑物P在北偏东30°方向上,继续行驶40秒到达B处时,测得建筑物P在北偏西60°方向上,如图所示,求建筑物P到赛道AB的距离(结果保留根号).

    23.(8分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
    (1)求函数y=kx+b和y=的表达式;
    (2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.

    24.(10分)某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少学生进行了抽样调查?本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?若该校九年级共有200名学生,如图是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请估计全校六至九年级学生中最喜欢跳绳活动的人数约为多少?

    25.(10分)已知关于的方程有两个实数根.求的取值范围;若,求的值;
    26.(12分)先化简,再求值:,其中x=-1.
    27.(12分)(1)问题发现:
    如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为   ;
    (2)深入探究:
    如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
    (3)拓展延伸:
    如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=,试求EF的长.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    解决本题抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.
    【详解】
    由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).
    故选D.

    2、A
    【解析】
    试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.
    解:∵⊙O的半径为3,圆心O到直线L的距离为2,
    ∵3>2,即:d<r,
    ∴直线L与⊙O的位置关系是相交.
    故选A.
    考点:直线与圆的位置关系.
    3、C
    【解析】
    根据相反数的定义即可求解.
    【详解】
    -4的相反数是4,故选C.
    【点晴】
    此题主要考查相反数,解题的关键是熟知相反数的定义.
    4、A
    【解析】
    试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形.
    故选A.
    【考点】简单组合体的三视图.
    5、D
    【解析】
    分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.
    详解:∵方程有两个不相同的实数根,

    解得:m<1.
    故选D.
    点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
    6、D
    【解析】
    如图:

    ∵AB=5,, ∴D=4, ∵, ∴,∴AC=4,
    ∵在RT△AD中,D,AD=8, ∴A=,故答案为D.
    7、C
    【解析】
    试题解析:左视图如图所示:

    故选C.
    8、D
    【解析】
    根据从上边看得到的图形是俯视图,可得答案.
    【详解】
    该空心圆柱体的俯视图是圆环,如图所示:

    故选D.
    【点睛】
    本题考查了三视图,明确俯视图是从物体上方看得到的图形是解题的关键.
    9、D
    【解析】
    分析:根据轴对称图形与中心对称图形的概念分别分析得出答案.
    详解:A.是轴对称图形,也是中心对称图形,故此选项错误;
    B.不是轴对称图形,也不是中心对称图形,故此选项错误;
    C.不是轴对称图形,是中心对称图形,故此选项错误;
    D.是轴对称图形,不是中心对称图形,故此选项正确.
    故选D.
    点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;
    中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.
    10、C
    【解析】
    试题分析:先利用配方法得到y=﹣(x﹣1)2+1,然后根据二次函数的最值问题求解.
    解:y=﹣(x﹣1)2+1,
    ∵a=﹣1<0,
    ∴当x=1时,y有最大值,最大值为1.
    故选C.
    考点:二次函数的最值.
    11、C
    【解析】
    先根据平行线的性质得出∠CBE=∠E=60°,再根据三角形的外角性质求出∠C的度数即可.
    【详解】
    ∵BC∥DE,
    ∴∠CBE=∠E=60°,
    ∵∠A=35°,∠C+∠A=∠CBE,
    ∴∠C=∠CBE﹣∠C=60°﹣35°=25°,
    故选C.
    【点睛】
    本题考查了平行线的性质、三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.
    12、B
    【解析】
    根据众数和中位数的概念求解.
    【详解】
    由表可知,8环出现次数最多,有4次,所以众数为8环;
    这10个数据的中位数为第5、6个数据的平均数,即中位数为=8.5(环),
    故选:B.
    【点睛】
    本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、ab(2a+1)(2a-1)
    【解析】
    先提取公因式再用公式法进行因式分解即可.
    【详解】
    4a3b- ab= ab(4a2-1)=ab(2a+1)(2a-1)
    【点睛】
    此题主要考查因式分解单项式,解题的关键是熟知因式分解的方法.
    14、1.
    【解析】
    试题分析:∵△ABC为等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=1°,∵m∥n,∴∠1=1°;故答案为1.
    考点:等腰直角三角形;平行线的性质.
    15、2
    【解析】
    【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.
    【详解】∵3※x=3x﹣3+x﹣2<2,
    ∴x<,
    ∵x为正整数,
    ∴x=2,
    故答案为:2.
    【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.
    16、等圆的半径相等,直径所对的圆周角是直角,三角形定义
    【解析】
    根据圆周角定理可判断△ABC为直角三角形.
    【详解】
    根据作图得AB为直径,则利用圆周角定理可判断∠ACB=90°,从而得到△ABC满足条件.
    故答案为:等圆的半径相等,直径所对的圆周角是直角,三角形定义.
    【点睛】
    本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.
    17、>1
    【解析】
    依题意可得,解得,所以函数的自变量的取值范围是
    18、-1
    【解析】
    根据一元二次方程的解的定义,将x=a代入方程3x1-5x+1=0,列出关于a的一元二次方程,通过变形求得3a1-5a的值后,将其整体代入所求的代数式并求值即可.
    【详解】
    解:∵方程3x1-5x+1=0的一个根是a,
    ∴3a1-5a+1=0,
    ∴3a1-5a=-1,
    ∴6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1.
    故答案是:-1.
    【点睛】
    此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球
    【解析】
    (1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;
    (2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.
    【详解】
    (1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,
    根据题意得:,
    解得:x=50,
    经检验,x=50是原方程的解,且符合题意,
    ∴x+2=1.
    答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.
    (2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,
    根据题意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,
    解得:m≤2.
    答:这所学校最多可购买2个乙种足球.
    【点睛】
    本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.
    20、证明见解析
    【解析】
    试题分析:先利用等角的余角相等得到根据有两组角对应相等,即可证明两三角形相似.
    试题解析:∵四边形为矩形,


    于点F,



    点睛:两组角对应相等,两三角形相似.
    21、(1)7、30%;(2)补图见解析;(3)105人;(3) 
    【解析】
    试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;
    (2)根据(1)中所求数据即可补全条形图;
    (3)总人数乘以棋类活动的百分比可得;
    (4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.
    试题解析:解:(1)本次调查的总人数为10÷25%=40(人),∴参加音乐类活动的学生人数为40×17.5%=7人,参加球类活动的人数的百分比为×100%=30%,故答案为7,30%;
    (2)补全条形图如下:

    (3)该校学生共600人,则参加棋类活动的人数约为600×=105,故答案为105;
    (4)画树状图如下:

    共有12种情况,选中一男一女的有6种,则P(选中一男一女)==.
    点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    22、100米.
    【解析】
    【分析】如图,作PC⊥AB于C,构造出Rt△PAC与Rt△PBC,求出AB的长度,利用特殊角的三角函数值进行求解即可得.
    【详解】如图,过P点作PC⊥AB于C,

    由题意可知:∠PAC=60°,∠PBC=30°,
    在Rt△PAC中,tan∠PAC=,∴AC=PC,
    在Rt△PBC中,tan∠PBC=,∴BC=PC,
    ∵AB=AC+BC=PC+PC=10×40=400,
    ∴PC=100,
    答:建筑物P到赛道AB的距离为100米.
    【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形,利用特殊角的三角函数值进行解答是关键.
    23、(1) ,y=2x﹣1;(2).
    【解析】
    (1)利用待定系数法即可解答;
    (2)作MD⊥y轴,交y轴于点D,设点M的坐标为(x,2x-1),根据MB=MC,得到CD=BD,再列方程可求得x的值,得到点M的坐标
    【详解】
    解:(1)把点A(4,3)代入函数得:a=3×4=12,
    ∴.
    ∵A(4,3)
    ∴OA=1,
    ∵OA=OB,
    ∴OB=1,
    ∴点B的坐标为(0,﹣1)
    把B(0,﹣1),A(4,3)代入y=kx+b得:
    ∴y=2x﹣1.
    (2)作MD⊥y轴于点D.

    ∵点M在一次函数y=2x﹣1上,
    ∴设点M的坐标为(x,2x﹣1)则点D(0,2x-1)
    ∵MB=MC,
    ∴CD=BD
    ∴8-(2x-1)=2x-1+1
    解得:x=
    ∴2x﹣1= ,
    ∴点M的坐标为 .
    【点睛】
    本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.
    24、(1)50(2)36%(3)160
    【解析】
    (1)根据条形图的意义,将各组人数依次相加即可得到答案;(2)根据条形图可直接得到最喜欢篮球活动的人数,除以(1)中的调查总人数即可得出其所占的百分比;(3)用样本估计总体,先求出九年级占全校总人数的百分比,然后求出全校的总人数;再根据最喜欢跳绳活动的学生所占的百分比,继而可估计出全校学生中最喜欢跳绳活动的人数.
    【详解】
    (1)该校对名学生进行了抽样调查.
    本次调查中,最喜欢篮球活动的有人,

    ∴最喜欢篮球活动的人数占被调查人数的.
    (3),
    人,
    人.
    答:估计全校学生中最喜欢跳绳活动的人数约为人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.
    25、(1);(2)k=-3
    【解析】
    (1)依题意得△≥0,即[-2(k-1)]2-4k2≥0;(2)依题意x1+x2=2(k-1),x1·x2=k2
    以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1;②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1);
    【详解】
    解:(1)依题意得△≥0,即[-2(k-1)]2-4k2≥0
    解得
    (2)依题意x1+x2=2(k-1),x1·x2=k2
    以下分两种情况讨论:
    ①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1
    解得k1=k2=1

    ∴k1=k2=1不合题意,舍去
    ②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1)
    解得k1=1,k2=-3

    ∴k=-3
    综合①、②可知k=-3
    【点睛】
    一元二次方程根与系数关系,根判别式.
    26、解:原式=,.
    【解析】
    试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简.然后代x的值,进行二次根式化简.
    解:原式=.
    当x=-1时,原式.
    27、(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3);
    【解析】
    (1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.
    (2)根据△ABC,△AMN为等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根据相似三角形的性质得到,利用等腰三角形的性质得到∠BAC=∠MAN,根据相似三角形的性质即可得到结论;
    (3)如图3,连接AB,AN,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出,得到BM=2,CM=8,再根据勾股定理即可得到答案.
    【详解】
    (1)NC∥AB,理由如下:
    ∵△ABC与△MN是等边三角形,
    ∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
    ∴∠BAM=∠CAN,
    在△ABM与△ACN中,

    ∴△ABM≌△ACN(SAS),
    ∴∠B=∠ACN=60°,
    ∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,
    ∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,
    ∴CN∥AB;
    (2)∠ABC=∠ACN,理由如下:
    ∵=1且∠ABC=∠AMN,
    ∴△ABC~△AMN
    ∴,
    ∵AB=BC,
    ∴∠BAC=(180°﹣∠ABC),
    ∵AM=MN
    ∴∠MAN=(180°﹣∠AMN),
    ∵∠ABC=∠AMN,
    ∴∠BAC=∠MAN,
    ∴∠BAM=∠CAN,
    ∴△ABM~△ACN,
    ∴∠ABC=∠ACN;
    (3)如图3,连接AB,AN,
    ∵四边形ADBC,AMEF为正方形,
    ∴∠ABC=∠BAC=45°,∠MAN=45°,
    ∴∠BAC﹣∠MAC=∠MAN﹣∠MAC
    即∠BAM=∠CAN,
    ∵,
    ∴,
    ∴△ABM~△ACN
    ∴,
    ∴=cos45°=,
    ∴,
    ∴BM=2,
    ∴CM=BC﹣BM=8,
    在Rt△AMC,
    AM=,
    ∴EF=AM=2.

    【点睛】
    本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.

    相关试卷

    浙江省宁波市镇海区镇海区仁爱中学2023-2024学年七年级下学期期中数学试题(原卷版+解析版):

    这是一份浙江省宁波市镇海区镇海区仁爱中学2023-2024学年七年级下学期期中数学试题(原卷版+解析版),文件包含浙江省宁波市镇海区镇海区仁爱中学2023-2024学年七年级下学期期中数学试题原卷版docx、浙江省宁波市镇海区镇海区仁爱中学2023-2024学年七年级下学期期中数学试题解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    浙江省宁波市镇海区镇海区仁爱中学2023-2024学年八年级上学期期末数学试题(原卷版+解析版):

    这是一份浙江省宁波市镇海区镇海区仁爱中学2023-2024学年八年级上学期期末数学试题(原卷版+解析版),文件包含精品解析浙江省宁波市镇海区镇海区仁爱中学2023-2024学年八年级上学期期末数学试题原卷版docx、精品解析浙江省宁波市镇海区镇海区仁爱中学2023-2024学年八年级上学期期末数学试题解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。

    浙江省宁波市镇海区镇海区仁爱中学2022-2023学年七年级下学期期末数学试题:

    这是一份浙江省宁波市镇海区镇海区仁爱中学2022-2023学年七年级下学期期末数学试题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map