|试卷下载
终身会员
搜索
    上传资料 赚现金
    北京市顺义区2021-2022学年中考冲刺卷数学试题含解析
    立即下载
    加入资料篮
    北京市顺义区2021-2022学年中考冲刺卷数学试题含解析01
    北京市顺义区2021-2022学年中考冲刺卷数学试题含解析02
    北京市顺义区2021-2022学年中考冲刺卷数学试题含解析03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京市顺义区2021-2022学年中考冲刺卷数学试题含解析

    展开
    这是一份北京市顺义区2021-2022学年中考冲刺卷数学试题含解析,共27页。试卷主要包含了化简的结果为,点A,一次函数y=kx+k,定义运算等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列说法中不正确的是(  )
    A.全等三角形的周长相等 B.全等三角形的面积相等
    C.全等三角形能重合 D.全等三角形一定是等边三角形
    2.6的相反数为  
    A.-6 B.6 C. D.
    3.化简的结果为( )
    A.﹣1 B.1 C. D.
    4.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于(  )

    A.35° B.45° C.55° D.25°
    5.如图,在△ABC中,CD⊥AB于点D,E,F分别为AC,BC的中点,AB=10,BC=8,DE=4.5,则△DEF的周长是(  )

    A.9.5 B.13.5 C.14.5 D.17
    6.点A(-1,),B(-2,)在反比例函数的图象上,则,的大小关系是( )
    A.> B.= C.< D.不能确定
    7.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为( )

    A.3:4 B.9:16 C.9:1 D.3:1
    8.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(  )
    A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y3
    9.一次函数y=kx+k(k≠0)和反比例函数在同一直角坐标系中的图象大致是( )
    A. B. C. D.
    10.定义运算:a⋆b=2ab.若a,b是方程x2+x-m=0(m>0)的两个根,则(a+1)⋆a -(b+1)⋆b的值为( )
    A.0 B.2 C.4m D.-4m
    11.如图,点A、B、C在圆O上,若∠OBC=40°,则∠A的度数为(  )

    A.40° B.45° C.50° D.55°
    12.若2<<3,则a的值可以是(  )
    A.﹣7 B. C. D.12
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.比较大小: .(填“>”,“<”或“=”)
    14.一个凸多边形的内角和与外角和相等,它是______边形.
    15.比较大小: ___1.(填“>”、“<”或“=”)
    16.分解因式:a3b+2a2b2+ab3=_____.
    17.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为__________.

    18.函数y=的自变量x的取值范围为____________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.
    以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.
    20.(6分)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象交于点A(-1,6),B(a,-2).求一次函数与反比例函数的解析式;根据图象直接写出y1>y2 时,x的取值范围.

    21.(6分)对于平面直角坐标系中的点,将它的纵坐标与横坐标的比称为点的“理想值”,记作.如的“理想值”.

    (1)①若点在直线上,则点的“理想值”等于_______;
    ②如图,,的半径为1.若点在上,则点的“理想值”的取值范围是_______.
    (2)点在直线上,的半径为1,点在上运动时都有,求点的横坐标的取值范围;
    (3),是以为半径的上任意一点,当时,画出满足条件的最大圆,并直接写出相应的半径的值.(要求画图位置准确,但不必尺规作图)
    22.(8分)计算:|-2|+2﹣1﹣cos61°﹣(1﹣)1.
    23.(8分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.求该抛物线的表达式;点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.
    ①当点P在直线BC的下方运动时,求△PBC的面积的最大值;
    ②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.

    24.(10分)如图,在中,,是角平分线,平分交于点,经过两点的交于点,交于点,恰为的直径.
    求证:与相切;当时,求的半径.
    25.(10分)如图,在四边形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,点E,F同时从B点出发,沿射线BC向右匀速移动,已知点F的移动速度是点E移动速度的2倍,以EF为一边在CB的上方作等边△EFG,设E点移动距离为x(0<x<6).
    (1)∠DCB=   度,当点G在四边形ABCD的边上时,x=   ;
    (2)在点E,F的移动过程中,点G始终在BD或BD的延长线上运动,求点G在线段BD的中点时x的值;
    (3)当2<x<6时,求△EFG与四边形ABCD重叠部分面积y与x之间的函数关系式,当x取何值时,y有最大值?并求出y的最大值.

    26.(12分)如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, ≈1.7)

    27.(12分)某新建小区要修一条1050米长的路,甲、乙两个工程队想承建这项工程.经
    了解得到以下信息(如表):
    工程队
    每天修路的长度(米)
    单独完成所需天数(天)
    每天所需费用(元)
    甲队
    30
    n
    600
    乙队
    m
    n﹣14
    1160
    (1)甲队单独完成这项工程所需天数n=  ,乙队每天修路的长度m=  (米);
    (2)甲队先修了x米之后,甲、乙两队一起修路,又用了y天完成这项工程(其中x,y为正整数).
    ①当x=90时,求出乙队修路的天数;
    ②求y与x之间的函数关系式(不用写出x的取值范围);
    ③若总费用不超过22800元,求甲队至少先修了多少米.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    根据全等三角形的性质可知A,B,C命题均正确,故选项均错误;
    D.错误,全等三角也可能是直角三角,故选项正确.
    故选D.
    【点睛】
    本题考查全等三角形的性质,两三角形全等,其对应边和对应角都相等.
    2、A
    【解析】
    根据相反数的定义进行求解.
    【详解】
    1的相反数为:﹣1.故选A.
    【点睛】
    本题主要考查相反数的定义,熟练掌握相反数的定义是解答的关键,绝对值相等,符号相反的两个数互为相反数.
    3、B
    【解析】
    先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.
    【详解】
    解:.
    故选B.
    4、A
    【解析】
    根据垂直的定义得到∠∠BCE=90°,根据平行线的性质求出∠BCD=55°,计算即可.
    【详解】
    解:∵BC⊥AE,
    ∴∠BCE=90°,
    ∵CD∥AB,∠B=55°,
    ∴∠BCD=∠B=55°,
    ∴∠1=90°-55°=35°,
    故选:A.
    【点睛】
    本题考查的是平行线的性质和垂直的定义,两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
    5、B
    【解析】
    由三角形中位线定理和直角三角形斜边上的中线等于斜边的一半解答.
    【详解】
    ∵在△ABC中,CD⊥AB于点D,E,F分别为AC,BC的中点,
    ∴DE=AC=4.1,DF=BC=4,EF=AB=1,
    ∴△DEF的周长=(AB+BC+AC)=×(10+8+9)=13.1.
    故选B.
    【点睛】
    考查了三角形中位线定理和直角三角形斜边上的中线,三角形的中位线平行于第三边,且等于第三边的一半.
    6、C
    【解析】
    试题分析:对于反比例函数y=,当k>0时,在每一个象限内,y随x的增大而减小,根据题意可得:-1>-2,则.
    考点:反比例函数的性质.
    7、B
    【解析】
    可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.
    【详解】
    ∵四边形ABCD为平行四边形,
    ∴DC∥AB,
    ∴△DFE∽△BFA,
    ∵DE:EC=3:1,
    ∴DE:DC=3:4,
    ∴DE:AB=3:4,
    ∴S△DFE:S△BFA=9:1.
    故选B.
    8、D
    【解析】
    先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.
    【详解】
    ∵反比例函数y=中,k=1>0,
    ∴此函数图象的两个分支在一、三象限,
    ∵x1<x2<0<x1,
    ∴A、B在第三象限,点C在第一象限,
    ∴y1<0,y2<0,y1>0,
    ∵在第三象限y随x的增大而减小,
    ∴y1>y2,
    ∴y2<y1<y1.
    故选D.
    【点睛】
    本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.
    9、C
    【解析】
    A、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象过二、四象限可知k<0,两结论相矛盾,故选项错误; B、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象与y轴交点在y轴的正半轴可知k>0,两结论相矛盾,故选项错误;C、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象过二、三、四象限可知k<0,两结论一致,故选项正确;D、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象与y轴交点在y轴的负半轴可知k<0,两结论相矛盾,故选项错误,
    故选C.
    10、A
    【解析】【分析】由根与系数的关系可得a+b=-1然后根据所给的新定义运算a⋆b=2ab对式子(a+1)⋆a -(b+1)⋆b用新定义运算展开整理后代入进行求解即可.
    【详解】∵a,b是方程x2+x-m=0(m>0)的两个根,
    ∴a+b=-1,
    ∵定义运算:a⋆b=2ab,
    ∴(a+1)⋆a -(b+1)⋆b
    =2a(a+1)-2b(b+1)
    =2a2+2a-2b2-2b
    =2(a+b)(a-b)+2(a-b)
    =-2(a-b)+2(a-b)=0,
    故选A.
    【点睛】本题考查了一元二次方程根与系数的关系,新定义运算等,理解并能运用新定义运算是解题的关键.
    11、C
    【解析】
    根据等腰三角形的性质和三角形内角和定理求得∠BOC=100°,再利用圆周角定理得到∠A=∠BOC.
    【详解】
    ∵OB=OC,
    ∴∠OBC=∠OCB.
    又∠OBC=40°,
    ∴∠OBC=∠OCB=40°,
    ∴∠BOC=180°-2×40°=100°,
    ∴∠A=∠BOC=50°
    故选:C.
    【点睛】
    考查了圆周角定理.在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.
    12、C
    【解析】
    根据已知条件得到4<a-2<9,由此求得a的取值范围,易得符合条件的选项.
    【详解】
    解:∵2<<3,
    ∴4<a-2<9,
    ∴6<a<1.
    又a-2≥0,即a≥2.
    ∴a的取值范围是6<a<1.
    观察选项,只有选项C符合题意.
    故选C.
    【点睛】
    考查了估算无理数的大小,估算无理数大小要用夹逼法.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、>
    【解析】
    试题分析:根据二次根式的性质可知,被开方数越大,所对应的二次根式就越大,因此可判断与=1的大小为>1.
    考点:二次根式的大小比较
    14、四
    【解析】
    任何多边形的外角和是360度,因而这个多边形的内角和是360度.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
    【详解】
    解:设边数为n,根据题意,得
    (n-2)•180=360,
    解得n=4,则它是四边形.
    故填:四.
    【点睛】
    此题主要考查已知多边形的内角和求边数,可以转化为方程的问题来解决.
    15、<.
    【解析】
    根据算术平方根的定义即可求解.
    【详解】
    解:∵=1,
    ∴<=1,
    ∴<1.
    故答案为<.
    【点睛】
    考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数.
    16、ab(a+b)1.
    【解析】
    a3b+1a1b1+ab3=ab(a1+1ab+b1)=ab(a+b)1.
    故答案为ab(a+b)1.
    【点睛】
    此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.
    17、4.1
    【解析】
    解:如图所示:∵四边形ABCD是矩形,
    ∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,
    根据题意得:△ABP≌△EBP,
    ∴EP=AP,∠E=∠A=90°,BE=AB=1,
    在△ODP和△OEG中,

    ∴△ODP≌△OEG(ASA),
    ∴OP=OG,PD=GE,
    ∴DG=EP,
    设AP=EP=x,则PD=GE=6﹣x,DG=x,
    ∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,
    根据勾股定理得:BC2+CG2=BG2,
    即62+(1﹣x)2=(x+2)2,
    解得:x=4.1,
    ∴AP=4.1;
    故答案为4.1.

    18、x≥-1
    【解析】
    试题分析:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.
    考点:函数自变量的取值范围.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)作图见解析;(2)作图见解析;5π(平方单位).
    【解析】
    (1)连接AO、BO、CO并延长到2AO、2BO、2CO长度找到各点的对应点,顺次连接即可.
    (2)△A′B′C′的A′、C′绕点B′顺时针旋转90°得到对应点,顺次连接即可.A′B′在旋转过程中扫过的图形面积是一个扇形,根据扇形的面积公式计算即可.
    【详解】
    解:(1)见图中△A′B′C′

    (2)见图中△A″B′C″
    扇形的面积(平方单位).
    【点睛】
    本题主要考查了位似图形及旋转变换作图的方法及扇形的面积公式.
    20、(1)y1=-2x+4,y2=-;(2)x<-1或0 【解析】
    (1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;
    (2)找出直线在一次函数图形的上方的自变量x的取值即可.
    【详解】
    解:(1)把点A(﹣1,6)代入反比例函数(m≠0)得:m=﹣1×6=﹣6,
    ∴.
    将B(a,﹣2)代入得:,a=1,∴B(1,﹣2),将A(﹣1,6),B(1,﹣2)代入一次函数y1=kx+b得:,
    ∴,
    ∴;
    (2)由函数图象可得:x<﹣1或0<x<1.
    【点睛】
    本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键.
    21、(1)①﹣3;②;(2);(3)
    【解析】
    (1)①把Q(1,a)代入y=x-4,可求出a值,根据理想值定义即可得答案;②由理想值越大,点与原点连线与轴夹角越大,可得直线与相切时理想值最大,与x中相切时,理想值最小,即可得答案;(2)根据题意,讨论与轴及直线相切时,LQ 取最小值和最大值,求出点横坐标即可;(3)根据题意将点转化为直线,点理想值最大时点在上,分析图形即可.
    【详解】
    (1)①∵点在直线上,
    ∴,
    ∴点的“理想值”=-3,
    故答案为:﹣3.
    ②当点在与轴切点时,点的“理想值”最小为0.
    当点纵坐标与横坐标比值最大时,的“理想值”最大,此时直线与切于点,
    设点Q(x,y),与x轴切于A,与OQ切于Q,
    ∵C(,1),
    ∴tan∠COA==,
    ∴∠COA=30°,
    ∵OQ、OA是的切线,
    ∴∠QOA=2∠COA=60°,
    ∴=tan∠QOA=tan60°=,
    ∴点的“理想值”为,

    故答案为:.
    (2)设直线与轴、轴的交点分别为点,点,
    当x=0时,y=3,
    当y=0时,x+3=0,解得:x=,
    ∴,.
    ∴,,
    ∴tan∠OAB=,
    ∴.
    ∵,
    ∴①如图,作直线.
    当与轴相切时,LQ=0,相应的圆心满足题意,其横坐标取到最大值.
    作轴于点,
    ∴,
    ∴.
    ∵的半径为1,
    ∴.
    ∴,
    ∴.
    ∴.

    ②如图
    当与直线相切时,LQ=,相应的圆心满足题意,其横坐标取到最小值.
    作轴于点,则.
    设直线与直线的交点为.
    ∵直线中,k=,
    ∴,
    ∴,点F与Q重合,
    则.
    ∵的半径为1,
    ∴.
    ∴.
    ∴,
    ∴.
    ∴.

    由①②可得,的取值范围是.
    (3)∵M(2,m),
    ∴M点在直线x=2上,
    ∵,
    ∴LQ取最大值时,=,
    ∴作直线y=x,与x=2交于点N,
    当M与ON和x轴同时相切时,半径r最大,
    根据题意作图如下:M与ON相切于Q,与x轴相切于E,
    把x=2代入y=x得:y=4,
    ∴NE=4,OE=2,ON==6,
    ∴∠MQN=∠NEO=90°,
    又∵∠ONE=∠MNQ,
    ∴,
    ∴,即,
    解得:r=.
    ∴最大半径为.

    【点睛】
    本题是一次函数和圆的综合题,主要考查了一次函数和圆的切线的性质,解答时要注意做好数形结合,根据图形进行分类讨论.
    22、1-
    【解析】
    利用零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质进行计算即可.
    【详解】
    解:原式=.
    【点睛】
    本题考查了零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质,熟练掌握性质及定义是解题的关键.
    23、 (1)y=x2+6x+5;(2)①S△PBC的最大值为;②存在,点P的坐标为P(﹣,﹣)或(0,5).
    【解析】
    (1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;
    (2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;
    ②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,求出 直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣,即可求出P点;当点P(P′)在直线BC上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.
    【详解】
    解:(1)将点A、B坐标代入二次函数表达式得:,
    解得:,
    故抛物线的表达式为:y=x2+6x+5…①,
    令y=0,则x=﹣1或﹣5,
    即点C(﹣1,0);
    (2)①如图1,过点P作y轴的平行线交BC于点G,

    将点B、C的坐标代入一次函数表达式并解得:
    直线BC的表达式为:y=x+1…②,
    设点G(t,t+1),则点P(t,t2+6t+5),
    S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,
    ∵-<0,
    ∴S△PBC有最大值,当t=﹣时,其最大值为;
    ②设直线BP与CD交于点H,

    当点P在直线BC下方时,
    ∵∠PBC=∠BCD,
    ∴点H在BC的中垂线上,
    线段BC的中点坐标为(﹣,﹣),
    过该点与BC垂直的直线的k值为﹣1,
    设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式并解得:
    直线BC中垂线的表达式为:y=﹣x﹣4…③,
    同理直线CD的表达式为:y=2x+2…④,
    联立③④并解得:x=﹣2,即点H(﹣2,﹣2),
    同理可得直线BH的表达式为:y=x﹣1…⑤,
    联立①⑤并解得:x=﹣或﹣4(舍去﹣4),
    故点P(﹣,﹣);
    当点P(P′)在直线BC上方时,
    ∵∠PBC=∠BCD,∴BP′∥CD,
    则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,
    即直线BP′的表达式为:y=2x+5…⑥,
    联立①⑥并解得:x=0或﹣4(舍去﹣4),
    故点P(0,5);
    故点P的坐标为P(﹣,﹣)或(0,5).
    【点睛】
    本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.
    24、 (1)证明见解析;(2).
    【解析】
    (1)连接OM,证明OM∥BE,再结合等腰三角形的性质说明AE⊥BE,进而证明OM⊥AE;
    (2)结合已知求出AB,再证明△AOM∽△ABE,利用相似三角形的性质计算.
    【详解】
    (1)连接OM,则OM=OB,
    ∴∠1=∠2,
    ∵BM平分∠ABC,
    ∴∠1=∠3,
    ∴∠2=∠3,
    ∴OM∥BC,
    ∴∠AMO=∠AEB,
    在△ABC中,AB=AC,AE是角平分线,
    ∴AE⊥BC,
    ∴∠AEB=90°,
    ∴∠AMO=90°,
    ∴OM⊥AE,
    ∵点M在圆O上,
    ∴AE与⊙O相切;

    (2)在△ABC中,AB=AC,AE是角平分线,
    ∴BE=BC,∠ABC=∠C,
    ∵BC=4,cosC=
    ∴BE=2,cos∠ABC=,
    在△ABE中,∠AEB=90°,
    ∴AB==6,
    设⊙O的半径为r,则AO=6-r,
    ∵OM∥BC,
    ∴△AOM∽△ABE,
    ∴∴,
    ∴,
    解得,
    ∴的半径为.
    【点睛】
    本题考查了切线的判定;等腰三角形的性质;相似三角形的判定与性质;解直角三角形等知识,综合性较强,正确添加辅助线,熟练运用相关知识是解题的关键.
    25、 (1) 30;2;(2)x=1;(3)当x=时,y最大=;
    【解析】
    (1)如图1中,作DH⊥BC于H,则四边形ABHD是矩形.AD=BH=3,BC=6,CH=BC﹣BH=3,当等边三角形△EGF的高= 时,点G在AD上,此时x=2;
    (2)根据勾股定理求出的长度,根据三角函数,求出∠ADB=30°,根据中点的定义得出根据等边三角形的性质得到,即可求出x的值;
    (3)图2,图3三种情形解决问题.①当2 【详解】
    (1)作DH⊥BC于H,则四边形ABHD是矩形.

    ∵AD=BH=3,BC=6,
    ∴CH=BC﹣BH=3,
    在Rt△DHC中,CH=3,

    当等边三角形△EGF的高等于时,点G在AD上,此时x=2,∠DCB=30°,
    故答案为30,2,
    (2)如图
    ∵AD∥BC
    ∴∠A=180°﹣∠ABC=180°﹣90°=90°
    在Rt△ABD中,

    ∴∠ADB=30°
    ∵G是BD的中点

    ∵AD∥BC
    ∴∠ADB=∠DBC=30°
    ∵△GEF是等边三角形,
    ∴∠GFE=60°
    ∴∠BGF=90°
    在Rt△BGF中,
    ∴2x=2即x=1;
    (3)分两种情况:
    当2<x<3,如图2

    点E、点F在线段BC上△GEF与四边形ABCD重叠部分为四边形EFNM
    ∵∠FNC=∠GFE﹣∠DCB=60°﹣30°=30°
    ∴∠FNC=∠DCB
    ∴FN=FC=6﹣2x
    ∴GN=x﹣(6﹣2x)=3x﹣6
    ∵∠FNC=∠GNM=30°,∠G=60°
    ∴∠GMN=90°
    在Rt△GNM中,


    ∴当时,最大
    当3≤x<6时,如图3,

    点E在线段BC上,点F在线段BC的延长线上,△GEF与四边形ABCD重叠部分为△ECP
    ∵∠PCE=30°,∠PEC=60°
    ∴∠EPC=90°
    在Rt△EPC中EC=6﹣x,


    对称轴为
    当x<6时,y随x的增大而减小
    ∴当x=3时,最大
    综上所述:当时,最大
    【点睛】
    属于四边形的综合题,考查动点问题,等边三角形的性质,三角函数,二次函数的最值等,综合性比较强,难度较大.
    26、潜艇C离开海平面的下潜深度约为308米
    【解析】试题分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,用锐角三角函数分别在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用BD=AD+AB二者之间的关系列出方程求解.
    试题解析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,
    设AD=x,则BD=BA+AD=1000+x,
    在Rt△ACD中,CD= = =
    在Rt△BCD中,BD=CD•tan68°,
    ∴325+x= •tan68°
    解得:x≈100米,
    ∴潜艇C离开海平面的下潜深度为100米.

    点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解.
    视频
    27、(1)35,50;(2)①12;②y=﹣x+;③150米.
    【解析】
    (1)用总长度÷每天修路的长度可得n的值,继而可得乙队单独完成时间,再用总长度÷乙单独完成所需时间可得乙队每天修路的长度m;
    (2)①根据:甲队先修建的长度+(甲队每天修建长度+乙队每天修建长度)×两队合作时间=总长度,列式计算可得;
    ②由①中的相等关系可得y与x之间的函数关系式;
    ③根据:甲队先修x米的费用+甲、乙两队每天费用×合作时间≤22800,列不等式求解可得.
    【详解】
    解:(1)甲队单独完成这项工程所需天数n=1050÷30=35(天),
    则乙单独完成所需天数为21天,
    ∴乙队每天修路的长度m=1050÷21=50(米),
    故答案为35,50;
    (2)①乙队修路的天数为=12(天);
    ②由题意,得:x+(30+50)y=1050,
    ∴y与x之间的函数关系式为:y=﹣x+;
    ③由题意,得:600×+(600+1160)(﹣x+)≤22800,
    解得:x≥150,
    答:若总费用不超过22800元,甲队至少先修了150米.
    【点睛】
    本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.

    相关试卷

    北京市顺义区达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份北京市顺义区达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共23页。试卷主要包含了答题时请按要求用笔,下列各数中,比﹣1大1的是等内容,欢迎下载使用。

    北京市丰台区十八中学2021-2022学年中考冲刺卷数学试题含解析: 这是一份北京市丰台区十八中学2021-2022学年中考冲刺卷数学试题含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,已知等内容,欢迎下载使用。

    北京市京源学校2021-2022学年中考冲刺卷数学试题含解析: 这是一份北京市京源学校2021-2022学年中考冲刺卷数学试题含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,已知∠BAC=45等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map