年终活动
搜索
    上传资料 赚现金

    北京市海淀区重点达标名校2021-2022学年中考四模数学试题含解析

    立即下载
    加入资料篮
    北京市海淀区重点达标名校2021-2022学年中考四模数学试题含解析第1页
    北京市海淀区重点达标名校2021-2022学年中考四模数学试题含解析第2页
    北京市海淀区重点达标名校2021-2022学年中考四模数学试题含解析第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京市海淀区重点达标名校2021-2022学年中考四模数学试题含解析

    展开

    这是一份北京市海淀区重点达标名校2021-2022学年中考四模数学试题含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁,下面说法正确的个数有,函数的图像位于等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图所示的几何体,上下部分均为圆柱体,其左视图是( )

    A. B. C. D.
    2.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式(  )

    A.(a+b)(a﹣b)=a2﹣b2 B.(a﹣b)2=a2﹣2ab+b2
    C.(a+b)2=a2+2ab+b2 D.(a+b)2=(a﹣b)2+4ab
    3.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=(  )

    A.110° B.120° C.125° D.135°
    4.下面说法正确的个数有(  )
    ①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;
    ②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;
    ③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;
    ④如果∠A=∠B=∠C,那么△ABC是直角三角形;
    ⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;
    ⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.
    A.3个 B.4个 C.5个 D.6个
    5.函数的图像位于( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    6.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC.有下列结论:①abc<0;②3b+4c<0;③c>﹣1;④关于x的方程ax2+bx+c=0有一个根为﹣,其中正确的结论个数是(  )

    A.1 B.2 C.3 D.4
    7.如图,直线 AB 与▱ MNPQ 的四边所在直线分别交于 A、B、C、D,则图中的相似三角形有( )

    A.4 对 B.5 对 C.6 对 D.7 对
    8.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为( )

    A. B. C. D.1
    9.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于(  )

    A.42° B.28° C.21° D.20°
    10.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( ).
    A. B. C. D.
    11.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是(  )

    A. B. C. D.
    12.某排球队名场上队员的身高(单位:)是:,,,,,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高( )
    A.平均数变小,方差变小 B.平均数变小,方差变大
    C.平均数变大,方差变小 D.平均数变大,方差变大
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.在△ABC中,∠C=30°,∠A﹣∠B=30°,则∠A=_____.
    14.如图,矩形ABCD中,E为BC的中点,将△ABE沿直线AE折叠时点B落在点F处,连接FC,若∠DAF=18°,则∠DCF=_____度.

    15.分解因式:= .
    16.在直角坐标系平面内,抛物线y=3x2+2x在对称轴的左侧部分是_____的(填“上升”或“下降”)
    17.如图,若点 的坐标为 ,则 =________.

    18.已知(x、y、z≠0),那么的值为_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.

    (1)如图1,若点E是DC的中点,CH与AB之间的数量关系是______;
    (2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;
    (3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.
    20.(6分)先化简,再求值:1+÷(1﹣),其中x=2cos30°+tan45°.
    21.(6分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.
    (1)求口袋中黄球的个数;
    (2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;
    22.(8分)在平面直角坐标系中,O为坐标原点,点A(0,1),点C(1,0),正方形AOCD的两条对角线的交点为B,延长BD至点G,使DG=BD,延长BC至点E,使CE=BC,以BG,BE为邻边作正方形BEFG.
    (Ⅰ)如图①,求OD的长及的值;
    (Ⅱ)如图②,正方形AOCD固定,将正方形BEFG绕点B逆时针旋转,得正方形BE′F′G′,记旋转角为α(0°<α<360°),连接AG′.
    ①在旋转过程中,当∠BAG′=90°时,求α的大小;
    ②在旋转过程中,求AF′的长取最大值时,点F′的坐标及此时α的大小(直接写出结果即可).

    23.(8分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?
    24.(10分)阅读下列材料:
    题目:如图,在△ABC中,已知∠A(∠A<45°),∠C=90°,AB=1,请用sinA、cosA表示sin2A.

    25.(10分)如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t.
    ⑴用含t的代数式表示:AP=   ,AQ=   .
    ⑵当以A,P,Q为顶点的三角形与△ABC相似时,求运动时间是多少?

    26.(12分)问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1.点P是AC上的一个动点,过点P作MN⊥AC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上).设AP的长为x(0≤x≤4),△AMN的面积为y.

    建立模型:(1)y与x的函数关系式为:,
    解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象.请你补充列表,并在如图的坐标系中画出此函数的图象:
    x
    0

    1

    1

    3

    4
    y
    0

       

       

       

    0
    (3)观察所画的图象,写出该函数的两条性质:   .
    27.(12分)已知点O是正方形ABCD对角线BD的中点.
    (1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.
    ①∠AEM=∠FEM; ②点F是AB的中点;
    (2)如图2,若点E是OD上一点,点F是AB上一点,且使,请判断△EFC的形状,并说明理由;
    (3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当时,请猜想的值(请直接写出结论).



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C.
    考点:简单组合体的三视图.
    2、B
    【解析】
    根据图形确定出图1与图2中阴影部分的面积,由此即可解答.
    【详解】
    ∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;
    ∴(a﹣b)2=a2﹣2ab+b2,
    故选B.
    【点睛】
    本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.
    3、D
    【解析】
    如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,
    ∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,
    ∴∠ABE+∠BED+∠CDE=360°.
    又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,
    ∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,
    ∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.
    故选D.

    【点睛】
    本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.
    4、C
    【解析】
    试题分析:①∵三角形三个内角的比是1:2:3,
    ∴设三角形的三个内角分别为x,2x,3x,
    ∴x+2x+3x=180°,解得x=30°,
    ∴3x=3×30°=90°,
    ∴此三角形是直角三角形,故本小题正确;
    ②∵三角形的一个外角与它相邻的一个内角的和是180°,
    ∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;
    ③∵直角三角形的三条高的交点恰好是三角形的一个顶点,
    ∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;
    ④∵∠A=∠B=∠C,
    ∴设∠A=∠B=x,则∠C=2x,
    ∴x+x+2x=180°,解得x=45°,
    ∴2x=2×45°=90°,
    ∴此三角形是直角三角形,故本小题正确;
    ⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,
    ∴三角形一个内角也等于另外两个内角的和,
    ∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
    ∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;
    ⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,
    由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
    ∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.
    故选D.
    考点:1.三角形内角和定理;2.三角形的外角性质.
    5、D
    【解析】
    根据反比例函数中,当,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.
    【详解】
    解:函数的图象位于第四象限.
    故选:D.
    【点睛】
    此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键.
    6、B
    【解析】
    由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由对称轴=2可知a=,由图象可知当x=1时,y>0,可判断②;由OA=OC,且OA<1,可判断③;把-代入方程整理可得ac2-bc+c=0,结合③可判断④;从而可得出答案.
    【详解】
    解:∵图象开口向下,∴a<0,
    ∵对称轴为直线x=2,∴>0,∴b>0,
    ∵与y轴的交点在x轴的下方,∴c<0,
    ∴abc>0,故①错误.
    ∵对称轴为直线x=2,∴=2,∴a=,
    ∵由图象可知当x=1时,y>0,
    ∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,
    ∴3b+4c>0,故②错误.
    ∵由图象可知OA<1,且OA=OC,
    ∴OC<1,即-c<1,
    ∴c>-1,故③正确.
    ∵假设方程的一个根为x=-,把x=-代入方程可得+c=0,
    整理可得ac-b+1=0,
    两边同时乘c可得ac2-bc+c=0,
    ∴方程有一个根为x=-c,
    由③可知-c=OA,而当x=OA是方程的根,
    ∴x=-c是方程的根,即假设成立,故④正确.
    综上可知正确的结论有三个:③④.
    故选B.
    【点睛】
    本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.
    7、C
    【解析】
    由题意,AQ∥NP,MN∥BQ,∴△ACM∽△DCN,△CDN∽△BDP,△BPD∽△BQA,△ACM∽△ABQ,△DCN∽△ABQ,△ACM∽△DBP,所以图中共有六对相似三角形.
    故选C.
    8、B
    【解析】
    分析:由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.
    详解: 由于点P在运动中保持∠APD=90°, ∴点P的路径是一段以AD为直径的弧,
    设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,
    在Rt△QDC中,QC=, ∴CP=QC-QP=,故选B.
    点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.
    9、B
    【解析】
    利用OB=DE,OB=OD得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC进行计算即可.
    【详解】
    解:连结OD,如图,

    ∵OB=DE,OB=OD,
    ∴DO=DE,
    ∴∠E=∠DOE,
    ∵∠1=∠DOE+∠E,
    ∴∠1=2∠E,
    而OC=OD,
    ∴∠C=∠1,
    ∴∠C=2∠E,
    ∴∠AOC=∠C+∠E=3∠E,
    ∴∠E=∠AOC=×84°=28°.
    故选:B.
    【点睛】
    本题考查了圆的认识:掌握与圆有关的概念( 弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.
    10、B
    【解析】
    朝上的数字为偶数的有3种可能,再根据概率公式即可计算.
    【详解】
    依题意得P(朝上一面的数字是偶数)=
    故选B.
    【点睛】
    此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.
    11、B
    【解析】
    解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选B.

    12、A
    【解析】
    分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.
    详解:换人前6名队员身高的平均数为==188,
    方差为S2==;
    换人后6名队员身高的平均数为==187,
    方差为S2==
    ∵188>187,>,
    ∴平均数变小,方差变小,
    故选:A.
    点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、90°.
    【解析】
    根据三角形内角和得到∠A+∠B+∠C=180°,而∠C=30°,则可计算出∠A+∠B+=150°,由于∠A﹣∠B=30°,把两式相加消去∠B即可求得∠A的度数.
    【详解】
    解:∵∠A+∠B+∠C=180°,∠C=30°,
    ∴∠A+∠B+=150°,
    ∵∠A﹣∠B=30°,
    ∴2∠A=180°,
    ∴∠A=90°.
    故答案为:90°.
    【点睛】
    本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.
    14、1 .
    【解析】
    由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,求出∠BAE=∠FAE=1°,由直角三角形的性质得出∠AEF=∠AEB=54°,求出∠CEF=72°,求出FE=CE,由等腰三角形的性质求出∠ECF=54°,即可得出∠DCF的度数.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴∠BAD=∠B=∠BCD=90°,
    由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,
    ∵∠DAF=18°,
    ∴∠BAE=∠FAE=×(90°﹣18°)=1°,
    ∴∠AEF=∠AEB=90°﹣1°=54°,
    ∴∠CEF=180°﹣2×54°=72°,
    ∵E为BC的中点,
    ∴BE=CE,
    ∴FE=CE,
    ∴∠ECF=×(180°﹣72°)=54°,
    ∴∠DCF=90°﹣∠ECF=1°.
    故答案为1.
    【点睛】
    本题考查了矩形的性质、折叠变换的性质、直角三角形的性质、等腰三角形的性质、三角形内角和定理等知识点,求出∠ECF的度数是解题的关键.
    15、a(a+2)(a-2)
    【解析】

    16、下降
    【解析】
    根据抛物线y=3x2+2x图像性质可得,在对称轴的左侧部分是下降的.
    【详解】
    解:∵在中,,
    ∴抛物线开口向上,
    ∴在对称轴左侧部分y随x的增大而减小,即图象是下降的,
    故答案为下降.
    【点睛】
    本题考查二次函数的图像及性质.根据抛物线开口方向和对称轴的位置即可得出结论.
    17、
    【解析】
    根据勾股定理,可得OA的长,根据正弦是对边比斜边,可得答案.
    【详解】
    如图,由勾股定理,得:OA==1.sin∠1=,故答案为.

    18、1
    【解析】
    解:由(x、y、z≠0),解得:x=3z,y=2z,原式===1.故答案为1.
    点睛:本题考查了分式的化简求值和解二元一次方程组,难度适中,关键是先用z把x与y表示出来再进行代入求解.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)CH=AB.;(2)成立,证明见解析;(3)
    【解析】
    (1)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.
    (2)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.
    (3)首先根据三角形三边的关系,可得CK<AC+AK,据此判断出当C、A、K三点共线时,CK的长最大;然后根据全等三角形判定的方法,判断出△DFK≌△DEH,即可判断出DK=DH,再根据全等三角形判定的方法,判断出△DAK≌△DCH,即可判断出AK=CH=AB;最后根据CK=AC+AK=AC+AB,求出线段CK长的最大值是多少即可.
    【详解】
    解:(1)如图1,连接BE,

    在正方形ABCD中,
    AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,
    ∵点E是DC的中点,DE=EC,
    ∴点F是AD的中点,
    ∴AF=FD,
    ∴EC=AF,
    在△ABF和△CBE中,

    ∴△ABF≌△CBE,
    ∴∠1=∠2,
    ∵EH⊥BF,∠BCE=90°,
    ∴C、H两点都在以BE为直径的圆上,
    ∴∠3=∠2,
    ∴∠1=∠3,
    ∵∠3+∠4=90°,∠1+∠HBC=90°,
    ∴∠4=∠HBC,
    ∴CH=BC,
    又∵AB=BC,
    ∴CH=AB.
    (2)当点E在DC边上且不是DC的中点时,(1)中的结论CH=AB仍然成立.
    如图2,连接BE,

    在正方形ABCD中,
    AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,
    ∵AD=CD,DE=DF,
    ∴AF=CE,
    在△ABF和△CBE中,

    ∴△ABF≌△CBE,
    ∴∠1=∠2,
    ∵EH⊥BF,∠BCE=90°,
    ∴C、H两点都在以BE为直径的圆上,
    ∴∠3=∠2,
    ∴∠1=∠3,
    ∵∠3+∠4=90°,∠1+∠HBC=90°,
    ∴∠4=∠HBC,
    ∴CH=BC,
    又∵AB=BC,
    ∴CH=AB.
    (3)如图3,

    ∵CK≤AC+AK,
    ∴当C、A、K三点共线时,CK的长最大,
    ∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,
    ∴∠KDF=∠HDE,
    ∵∠DEH+∠DFH=360°-∠ADC-∠EHF=360°-90°-90°=180°,∠DFK+∠DFH=180°,
    ∴∠DFK=∠DEH,
    在△DFK和△DEH中,

    ∴△DFK≌△DEH,
    ∴DK=DH,
    在△DAK和△DCH中,

    ∴△DAK≌△DCH,
    ∴AK=CH
    又∵CH=AB,
    ∴AK=CH=AB,
    ∵AB=3,
    ∴AK=3,AC=3,
    ∴CK=AC+AK=AC+AB=,
    即线段CK长的最大值是.
    考点:四边形综合题.
    20、
    【解析】
    先化简分式,再计算x的值,最后把x的值代入化简后的分式,计算出结果.
    【详解】
    原式=
    =1+
    =1+
    =
    当x=2cos30°+tan45°
    =2×+1
    =+1时.
    =
    【点睛】
    本题主要考查了分式的加减及锐角三角函数值.解决本题的关键是掌握分式的运算法则和运算顺序.
    21、 (1)1;(2)
    【解析】
    (1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;
    【详解】
    解:(1)设口袋中黄球的个数为个,
    根据题意得:
    解得:=1
    经检验:=1是原分式方程的解
    ∴口袋中黄球的个数为1个
    (2)画树状图得:

    ∵共有12种等可能的结果,两次摸出都是红球的有2种情况
    ∴两次摸出都是红球的概率为: .
    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.
    22、(Ⅰ)(Ⅱ)①α=30°或150°时,∠BAG′=90°②当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,此时α=315°,F′(+,﹣)
    【解析】
    (1)根据正方形的性质以及勾股定理即可解决问题,(2)①因为∠BAG′=90°,
    BG′=2AB,可知sin∠AG′B=,推出∠AG′B=30°,推出旋转角α=30°,据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,②当α=315°时,A、B、F′在一条直线上时,AF′的长最大.
    【详解】
    (Ⅰ)如图1中,

    ∵A(0,1),
    ∴OA=1,
    ∵四边形OADC是正方形,
    ∴∠OAD=90°,AD=OA=1,
    ∴OD=AC==,
    ∴AB=BC=BD=BO=,
    ∵BD=DG,
    ∴BG=,
    ∴==.
    (Ⅱ)①如图2中,

    ∵∠BAG′=90°,BG′=2AB,
    ∴sin∠AG′B==,
    ∴∠AG′B=30°,
    ∴∠ABG′=60°,
    ∴∠DBG′=30°,
    ∴旋转角α=30°,
    根据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,
    综上所述,旋转角α=30°或150°时,∠BAG′=90°.
    ②如图3中,连接OF,

    ∵四边形BE′F′G′是正方形的边长为
    ∴BF′=2,
    ∴当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,
    此时α=315°,F′(+,﹣)
    【点睛】
    本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用.
    23、;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.
    【解析】
    (1)根据按每千克元的市场价收购了这种苹果千克,此后每天每千克苹果价格会上涨元,进而得出天后每千克苹果的价格为元与的函数关系;
    (2)根据每千克售价乘以销量等于销售总金额,求出即可;
    (3)利用总售价-成本-费用=利润,进而求出即可.
    【详解】
    根据题意知,;




    当时,最大利润12500元,
    答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.
    【点睛】
    此题主要考查了二次函数的应用以及二次函数最值求法,得出与的函数关系是解题关键.
    24、sin2A=2cosAsinA
    【解析】
    先作出直角三角形的斜边的中线,进而求出,∠CED=2∠A,最后用三角函数的定义即可得出结论
    【详解】
    解:如图,
    作Rt△ABC的斜边AB上的中线CE,

    ∴∠CED=2∠A,
    过点C作CD⊥AB于D,
    在Rt△ACD中,CD=ACsinA,
    在Rt△ABC中,AC=ABcosA=cosA
    在Rt△CED中,sin2A=sin∠CED== 2ACsinA=2cosAsinA

    【点睛】
    此题主要解直角三角形,锐角三角函数的定义,直角三角形的斜边的中线等于斜边的一半,构造出直角三角形和∠CED=2∠A是解本题的关键.
    25、(1)AP=2t,AQ=16﹣3t;(2)运动时间为秒或1秒.
    【解析】
    (1)根据路程=速度时间,即可表示出AP,AQ的长度.
    (2)此题应分两种情况讨论.(1)当△APQ∽△ABC时;(2)当△APQ∽△ACB时.利用相似三角形的性质求解即可.
    【详解】
    (1)AP=2t,AQ=16﹣3t.
    (2)∵∠PAQ=∠BAC,
    ∴当时,△APQ∽△ABC,即,解得
    当时,△APQ∽△ACB,即,解得t=1.
    ∴运动时间为秒或1秒.

    【点睛】
    考查相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.注意不要漏解.
    26、 (1) ①y=;②;(1)见解析;(3)见解析
    【解析】
    (1)根据线段相似的关系得出函数关系式(1)代入①中函数表达式即可填表(3)画图像,分析即可.
    【详解】
    (1)设AP=x
    ①当0≤x≤1时
    ∵MN∥BD
    ∴△APM∽△AOD

    ∴MP=
    ∵AC垂直平分MN
    ∴PN=PM=x
    ∴MN=x
    ∴y=AP•MN=
    ②当1<x≤4时,P在线段OC上,
    ∴CP=4﹣x
    ∴△CPM∽△COD

    ∴PM=
    ∴MN=1PM=4﹣x
    ∴y==﹣
    ∴y=
    (1)由(1)
    当x=1时,y=
    当x=1时,y=1
    当x=3时,y=

    (3)根据(1)画出函数图象示意图可知
    1、当0≤x≤1时,y随x的增大而增大
    1、当1<x≤4时,y随x的增大而减小
    【点睛】
    本题考查函数,解题的关键是数形结合思想.
    27、(1)①证明见解析;②证明见解析;(2)△EFC是等腰直角三角形.理由见解析;(3).
    【解析】
    试题分析:(1)①过点E作EG⊥BC,垂足为G,根据ASA证明△CEG≌△FEM得CE=FE,再根据SAS证明△ABE≌△CBE 得AE=CE,在△AEF中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x,则AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x, DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,从而AF=AB,得到点F是AB的中点.;(2)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AME≌△FME(SAS),从而可得△EFC是等腰直角三角形.(3)方法同第(2)小题.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AEM≌△FEM (ASA),得AM=FM,设AM=x,则AF=2x,DN =x,DE=x,BD=x,AB=x,=2x:x=.
    试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB, ∴∠AEM=∠FEM.
    ②设AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四边形AMND为矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴点F是AB的中点.
    (2)△EFC是等腰直角三角形.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG,设AM=x,则DN=AM=x,DE =x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.
    (3)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG. ∵EF⊥CE,∴∠FEC =90°,∴∠CEG+∠FEG=90°.又∠MEG =90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG =∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM (ASA),∴AM=FM.设AM=x,则AF=2x,DN =x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.

    考点:四边形综合题.

    相关试卷

    北京市海淀区首师大附重点达标名校2021-2022学年中考数学全真模拟试题含解析:

    这是一份北京市海淀区首师大附重点达标名校2021-2022学年中考数学全真模拟试题含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算正确的是, “a是实数,”这一事件是,若分式的值为0,则x的值为等内容,欢迎下载使用。

    2022年北京市昌平区重点达标名校中考四模数学试题含解析:

    这是一份2022年北京市昌平区重点达标名校中考四模数学试题含解析,共19页。

    2021-2022学年湖北阳新一中重点达标名校中考四模数学试题含解析:

    这是一份2021-2022学年湖北阳新一中重点达标名校中考四模数学试题含解析,共25页。试卷主要包含了下列运算结果正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map