北京市月坛中学2021-2022学年中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下图是由八个相同的小正方体组合而成的几何体,其左视图是( )
A. B. C. D.
2.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是( )
A. B. C. D.
3.如图,⊙O的半径为1,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC与∠BOC互补,则弦BC的长为( )
A. B.2 C.3 D.1.5
4.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是
A. B.
C. D.
5.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA的值为( )
A. B. C. D.3
6.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是( )
A.﹣2.5 B.﹣0.6 C.+0.7 D.+5
7.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的长是( )
A.3 B. C. D.
8.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:
①若C,O两点关于AB对称,则OA=;
②C,O两点距离的最大值为4;
③若AB平分CO,则AB⊥CO;
④斜边AB的中点D运动路径的长为π.
其中正确的是( )
A.①② B.①②③ C.①③④ D.①②④
9.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )
A.方差 B.极差 C.中位数 D.平均数
10.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形,转动这个四边形,使它形状改变,当,时,等于( )
A. B. C. D.
11.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是( )
A. B. C. D.
12.如图,在平面直角坐标系xOy中,A(2,0),B(0,2),⊙C的圆心为点C(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于E点,则△ABE面积的最小值是( )
A.2 B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.四张背面完全相同的卡片上分别写有0、、、、四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为___________.
14.计算:
(1)()2=_____;
(2) =_____.
15.已知线段a=4,线段b=9,则a,b的比例中项是_____.
16.如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形的面积之和(即阴影部分)为 cm2(结果保留π).
17.如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为 .
18.如果a2﹣b2=8,且a+b=4,那么a﹣b的值是__.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:
求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
20.(6分)某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:
x(万元)
1
2
2.5
3
5
yA(万元)
0.4
0.8
1
1.2
2
信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.
(1)求出yB与x的函数关系式;
(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;
(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?
21.(6分)先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.
22.(8分)如图,在中,,是边上的高线,平分交于点,经过,两点的交于点,交于点,为的直径.
(1)求证:是的切线;
(2)当,时,求的半径.
23.(8分)如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.
(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD= BD.
(2)探究证明
将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明
(3)拓展延伸
在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.
24.(10分)如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)数轴上点B对应的数是______.经过几秒,点M、点N分别到原点O的距离相等?
25.(10分)已知:如图,一次函数与反比例函数的图象有两个交点和,过点作轴,垂足为点;过点作轴,垂足为点,且,连接.
求,,的值;求四边形的面积.
26.(12分)如图,△ABC中,点D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的长.
27.(12分)已知函数的图象与函数的图象交于点.
(1)若,求的值和点P的坐标;
(2)当时,结合函数图象,直接写出实数的取值范围.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
解:找到从左面看所得到的图形,从左面可看到从左往右三列小正方形的个数为:2,3,1.
故选B.
2、B
【解析】
【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.
【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,
故选B.
【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.
3、A
【解析】
分析:作OH⊥BC于H,首先证明∠BOC=120,在Rt△BOH中,BH=OB•sin60°=1×,即可推出BC=2BH=,
详解:作OH⊥BC于H.
∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,
∴∠BOC=120°,
∵OH⊥BC,OB=OC,
∴BH=HC,∠BOH=∠HOC=60°,
在Rt△BOH中,BH=OB•sin60°=1×=,
∴BC=2BH=.
故选A.
点睛:本题考查三角形的外接圆与外心、锐角三角函数、垂径定理等知识,解题的关键是学会添加常用辅助线.
4、C
【解析】
分三段讨论:
①两车从开始到相遇,这段时间两车距迅速减小;
②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;
③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;
结合图象可得C选项符合题意.故选C.
5、B
【解析】
根据勾股定理和三角函数即可解答.
【详解】
解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,
设a=x,则c=3x,b==2x.
即tanA==.
故选B.
【点睛】
本题考查勾股定理和三角函数,熟悉掌握是解题关键.
6、B
【解析】
求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.
【详解】
解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,
∵5>3.5>2.5>0.7>0.6,
∴最接近标准的篮球的质量是-0.6,
故选B.
【点睛】
本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.
7、A
【解析】
根据锐角三角函数的性质,可知cosA==,然后根据AC=2,解方程可求得AB=3.
故选A.
点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=,然后带入数值即可求解.
8、D
【解析】
分析:①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以
②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;
③如图2,当∠ABO=30°时,易证四边形OACB是矩形,此时AB与CO互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;
④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.
详解:在Rt△ABC中,∵
∴
①若C.O两点关于AB对称,如图1,
∴AB是OC的垂直平分线,
则
所以①正确;
②如图1,取AB的中点为E,连接OE、CE,
∵
∴
当OC经过点E时,OC最大,
则C.O两点距离的最大值为4;
所以②正确;
③如图2,当时,
∴四边形AOBC是矩形,
∴AB与OC互相平分,
但AB与OC的夹角为不垂直,
所以③不正确;
④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的
则:
所以④正确;
综上所述,本题正确的有:①②④;
故选D.
点睛:属于三角形的综合体,考查了直角三角形的性质,直角三角形斜边上中线的性质,轴对称的性质,弧长公式等,熟练掌握直角三角形斜边的中线等于斜边的一半是解题的关键.
9、C
【解析】13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,
故只要知道自己的分数和中位数就可以知道是否获奖了.
故选C.
10、B
【解析】
首先连接AC,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=1,,易得△ABC是等边三角形,即可得到答案.
【详解】
连接AC,
∵将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,
∴AB=BC,
∵,
∴△ABC是等边三角形,
∴AC=AB=1.
故选:B.
【点睛】
本题考点:菱形的性质.
11、A
【解析】
试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形.
故选A.
【考点】简单组合体的三视图.
12、C
【解析】
当⊙C与AD相切时,△ABE面积最大,
连接CD,
则∠CDA=90°,
∵A(2,0),B(0,2),⊙C的圆心为点C(-1,0),半径为1,
∴CD=1,AC=2+1=3,
∴AD==2,
∵∠AOE=∠ADC=90°,∠EAO=∠CAD,
∴△AOE∽△ADC,
∴
即,∴OE=,
∴BE=OB+OE=2+
∴S△ABE=
BE?OA=×(2+)×2=2+
故答案为C.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】
∵在0.、、、这四个实数种,有理数有0.、、这3个,
∴抽到有理数的概率为,
故答案为.
【点睛】
此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
14、
【解析】
(1)直接利用分式乘方运算法则计算得出答案;
(2)直接利用分式除法运算法则计算得出答案.
【详解】
(1)()2=;
故答案为;
(2) ==.
故答案为.
【点睛】
此题主要考查了分式的乘除法运算,正确掌握运算法则是解题关键.
15、6
【解析】
根据已知线段a=4,b=9,设线段x是a,b的比例中项,列出等式,利用两内项之积等于两外项之积即可得出答案.
【详解】
解:∵a=4,b=9,设线段x是a,b的比例中项,
∴ ,
∴x2=ab=4×9=36,
∴x=6,x=﹣6(舍去).
故答案为6
【点睛】
本题主要考查比例线段问题,解题关键是利用两内项之积等于两外项之积解答.
16、.
【解析】
图中阴影部分的面积就是两个扇形的面积,圆A,B的半径为2cm,则根据扇形面积公式可得阴影面积.
【详解】
(cm2).
故答案为.
考点:1、扇形的面积公式;2、两圆相外切的性质.
17、.
【解析】
试题分析:设正方形的边长为y,EC=x,
由题意知,AE2=AB2+BE2,
即(x+y)2=y2+(y-x)2,
由于y≠0,
化简得y=4x,
∴sin∠EAB=.
考点:1.相切两圆的性质;2.勾股定理;3.锐角三角函数的定义
18、1.
【解析】
根据(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案.
【详解】
∵a1-b1=8,
∴(a+b)(a-b)=8,
∵a+b=4,
∴a-b=1,
故答案是:1.
【点睛】
考查了平方差,关键是掌握(a+b)(a-b)=a1-b1.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)3,补图详见解析;(2)
【解析】
(1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数-其余人数
(2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可
【详解】
由扇形图可以看到发箴言三条的有3名学生且占,
故该班团员人数为:
(人),
则发4条箴言的人数为:(人),
所以本月该班团员所发的箴言共(条),则平均所发箴言的条数是:(条).
(2)画树形图如下:
由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为.
【点睛】
此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键
20、 (1)yB=-0.2x2+1.6x(2)一次函数,yA=0.4x(3)该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元
【解析】
(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx求解即可;
(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;
(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值
【详解】
解:(1)yB=-0.2x2+1.6x,
(2)一次函数,yA=0.4x,
(3)设投资B产品x万元,投资A产品(15-x)万元,投资两种产品共获利W万元, 则W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,
∴当x=3时,W最大值=7.8,
答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元.
21、2x2﹣7xy,1
【解析】
根据完全平方公式及多项式的乘法法则展开,然后合并同类项进行化简,然后把x、y的值代入求值即可.
【详解】
原式=x2﹣4xy+4y2+x2﹣4xy+xy﹣4y2=2x2﹣7xy,
当x=5,y=时,原式=50﹣7=1.
【点睛】
完全平方公式和多项式的乘法法则是本题的考点,能够正确化简多项式是解题的关键.
22、(1)见解析;(2)的半径是.
【解析】
(1)连结,易证,由于是边上的高线,从而可知,所以是的切线.
(2)由于,从而可知,由,可知:,易证,所以,再证明,所以,从而可求出.
【详解】
解:(1)连结.
∵平分,
∴,又,
∴,
∴,
∵是边上的高线,
∴,
∴,
∴是的切线.
(2)∵,
∴,,
∴是中点,
∴,
∵,
∴,
∵,,
∴,
∴,
又∵,
∴,
在中,
,
∴,
∴,
,
而,
∴,
∴,
∴的半径是.
【点睛】
本题考查圆的综合问题,涉及锐角三角函数,相似三角形的判定与性质,等腰三角形的性质等知识,综合程度较高,需要学生综合运用知识的能力.
23、(1);(2)AD﹣DC=BD;(3)BD=AD=+1.
【解析】
(1)根据全等三角形的性质求出DC,AD,BD之间的数量关系
(2)过点B作BE⊥BD,交MN于点E.AD交BC于O,
证明,得到,,
根据为等腰直角三角形,得到,
再根据,即可解出答案.
(3)根据A、B、C、D四点共圆,得到当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.
在DA上截取一点H,使得CD=DH=1,则易证,
由即可得出答案.
【详解】
解:(1)如图1中,
由题意:,
∴AE=CD,BE=BD,
∴CD+AD=AD+AE=DE,
∵是等腰直角三角形,
∴DE=BD,
∴DC+AD=BD,
故答案为.
(2).
证明:如图,过点B作BE⊥BD,交MN于点E.AD交BC于O.
∵,
∴,
∴.
∵,,,
∴,
∴.又∵,
∴,
∴,,
∴为等腰直角三角形,.
∵,
∴.
(3)如图3中,易知A、B、C、D四点共圆,当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.
此时DG⊥AB,DB=DA,在DA上截取一点H,使得CD=DH=1,则易证,
∴.
【点睛】
本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.
24、(1)1;(2)经过2秒或2秒,点M、点N分别到原点O的距离相等
【解析】
试题分析:(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;
(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.
试题解析:(1)∵OB=3OA=1,
∴B对应的数是1.
(2)设经过x秒,点M、点N分别到原点O的距离相等,
此时点M对应的数为3x-2,点N对应的数为2x.
①点M、点N在点O两侧,则
2-3x=2x,
解得x=2;
②点M、点N重合,则,
3x-2=2x,
解得x=2.
所以经过2秒或2秒,点M、点N分别到原点O的距离相等.
25、(1),,.(2)6
【解析】
(1)用代入法可求解,用待定系数法求解;(2)延长,交于点,则.根据求解.
【详解】
解:(1)∵点在上,
∴,
∵点在上,且,
∴.
∵过,两点,
∴,
解得,
∴,,.
(2)如图,延长,交于点,则.
∵轴,轴,
∴,,
∴,,
∴
.
∴四边形的面积为6.
【点睛】
考核知识点:反比例函数和一次函数的综合运用.数形结合分析问题是关键.
26、.
【解析】
试题分析:可证明△ACD∽△ABC,则,即得出AC2=AD•AB,从而得出AC的长.
试题解析:∵∠ACD=∠ABC,∠A=∠A, ∴△ACD∽△ABC. ∴,∵AD=2,AB=6,∴.∴.∴AC=.
考点:相似三角形的判定与性质.
27、(1),,或;(2) .
【解析】
【分析】(1)将P(m,n)代入y=kx,再结合m=2n即可求得k的值,联立y=与y=kx组成方程组,解方程组即可求得点P的坐标;
(2)画出两个函数的图象,观察函数的图象即可得.
【详解】(1)∵函数的图象交于点,
∴n=mk,
∵m=2n,∴n=2nk,
∴k=,
∴直线解析式为:y=x,
解方程组,得,,
∴交点P的坐标为:(,)或(-,-);
(2)由题意画出函数的图象与函数的图象如图所示,
∵函数的图象与函数的交点P的坐标为(m,n),
∴当k=1时,P的坐标为(1,1)或(-1,-1),此时|m|=|n|,
当k>1时,结合图象可知此时|m|<|n|,
∴当时,≥1.
【点睛】本题考查了反比例函数与正比例函数的交点,待定系数法等,运用数形结合思想解题是关键.
北京市月坛中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析: 这是一份北京市月坛中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,已知二次函数,估计的值在等内容,欢迎下载使用。
北京市月坛中学2021-2022学年中考三模数学试题含解析: 这是一份北京市月坛中学2021-2022学年中考三模数学试题含解析,共16页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
北京市第四中学2021-2022学年中考数学模拟精编试卷含解析: 这是一份北京市第四中学2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了的相反数是,下列运算正确的是,的一个有理化因式是,某反比例函数的图象经过点,如图所示的几何体的主视图是等内容,欢迎下载使用。