![北京海淀区一零一中学2021-2022学年中考三模数学试题含解析第1页](http://www.enxinlong.com/img-preview/2/3/13111963/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![北京海淀区一零一中学2021-2022学年中考三模数学试题含解析第2页](http://www.enxinlong.com/img-preview/2/3/13111963/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![北京海淀区一零一中学2021-2022学年中考三模数学试题含解析第3页](http://www.enxinlong.com/img-preview/2/3/13111963/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京海淀区一零一中学2021-2022学年中考三模数学试题含解析
展开
这是一份北京海淀区一零一中学2021-2022学年中考三模数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.将5570000用科学记数法表示正确的是( )
A.5.57×105 B.5.57×106 C.5.57×107 D.5.57×108
2.计算(﹣)﹣1的结果是( )
A.﹣ B. C.2 D.﹣2
3.下列各式中计算正确的是
A. B. C. D.
4.下列关于事件发生可能性的表述,正确的是( )
A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件
B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖
C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品
D.掷两枚硬币,朝上的一面是一正面一反面的概率为
5.如图是几何体的三视图,该几何体是( )
A.圆锥 B.圆柱 C.三棱柱 D.三棱锥
6.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为( )
A.30° B.50° C.60° D.70°
7.2018 年 1 月份,菏泽市市区一周空气质量报告中某项污染指数的数据是 41, 45,41,44,40,42,41,这组数据的中位数、众数分别是( )
A.42,41 B.41,42 C.41,41 D.42,45
8.在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是,设金色纸边的宽为,那么满足的方程是( )
A. B.
C. D.
9.下列几何体中,其三视图都是全等图形的是( )
A.圆柱 B.圆锥 C.三棱锥 D.球
10.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是( )
用水量x(吨)
3
4
5
6
7
频数
1
2
5
4﹣x
x
A.平均数、中位数 B.众数、中位数 C.平均数、方差 D.众数、方差
二、填空题(本大题共6个小题,每小题3分,共18分)
11.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数是______.
12.分解因式:3m2﹣6mn+3n2=_____.
13.分解因式:ab2﹣9a=_____.
14.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(-1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为___.
15.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.
16.分解因式:a3-12a2+36a=______.
三、解答题(共8题,共72分)
17.(8分)如图,已知等边△ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点D作DE⊥AC,垂足为E,过点E作EF⊥AB,垂足为F,连接FD.
(1)求证:DE是⊙O的切线;
(2)求EF的长.
18.(8分)观察规律并填空.
______(用含n的代数式表示,n 是正整数,且 n ≥ 2)
19.(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
本数(本)
频数(人数)
频率
5
0.2
6
18
0.36
7
14
8
8
0.16
合计
1
(1)统计表中的________,________,________;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.
20.(8分)已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连接CB.
(1)直接写出∠D与∠MAC之间的数量关系;
(2)①如图1,猜想AB,BD与BC之间的数量关系,并说明理由;
②如图2,直接写出AB,BD与BC之间的数量关系;
(3)在MN绕点A旋转的过程中,当∠BCD=30°,BD=时,直接写出BC的值.
21.(8分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.当10≤x<60时,求y关于x的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;
①若两次购买鞋子共花费9200元,求第一次的购买数量;
②如何规划两次购买的方案,使所花费用最少,最少多少元?
22.(10分)如图,在▱ABCD中,以点4为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并廷长交BC于点E,连接EF
(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;
(2)若AB=2,AE=2,求∠BAD的大小.
23.(12分)如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).
(1)求这条抛物线的表达式;
(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;
(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.
24.(2017四川省内江市)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:
(1)这项被调查的总人数是多少人?
(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;
(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5570000有7位,所以可以确定n=7﹣1=1.
【详解】
5570000=5.57×101所以B正确
2、D
【解析】
根据负整数指数幂与正整数指数幂互为倒数,可得答案.
【详解】
解: ,
故选D.
【点睛】
本题考查了负整数指数幂,负整数指数幂与正整数指数幂互为倒数.
3、B
【解析】
根据完全平方公式对A进行判断;根据幂的乘方与积的乘方对B、C进行判断;根据合并同类项对D进行判断.
【详解】
A. ,故错误.
B. ,正确.
C. ,故错误.
D. , 故错误.
故选B.
【点睛】
考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.
4、C
【解析】
根据随机事件,必然事件的定义以及概率的意义对各个小题进行判断即可.
【详解】
解:A. 事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,故错误.
B. 体育彩票的中奖率为10%,则买100张彩票可能有10张中奖,故错误.
C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,正确.
D. 掷两枚硬币,朝上的一面是一正面一反面的概率为,故错误.
故选:C.
【点睛】
考查必然事件,随机事件的定义以及概率的意义,概率=所求情况数与总情况数之比.
5、C
【解析】
分析:根据一个空间几何体的主视图和左视图都是长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断是三棱柱,得到答案.
详解:∵几何体的主视图和左视图都是长方形,
故该几何体是一个柱体,
又∵俯视图是一个三角形,
故该几何体是一个三棱柱,
故选C.
点睛:本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.
6、C
【解析】
试题分析:连接BD,∵∠ACD=30°,∴∠ABD=30°,
∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.
故选C.
考点:圆周角定理
7、C
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
【详解】
从小到大排列此数据为:40,1,1,1,42,44,45, 数据 1 出现了三次最多为众数,1 处在第 4 位为中位数.
所以本题这组数据的中位数是 1,众数是 1.
故选C.
【点睛】
考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
8、B
【解析】
根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.
【详解】
由题意,设金色纸边的宽为,
得出方程:(80+2x)(50+2x)=5400,
整理后得:
故选:B.
【点睛】
本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.
9、D
【解析】
分析: 任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.
详解:圆柱,圆锥,三棱锥,球中,
三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,
故选D.
点睛: 本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.
10、B
【解析】
由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第6、7个数据的平均数,可得答案.
【详解】
∵6吨和7吨的频数之和为4-x+x=4,
∴频数之和为1+2+5+4=12,
则这组数据的中位数为第6、7个数据的平均数,即=5,
∴对于不同的正整数x,中位数不会发生改变,
∵后两组频数和等于4,小于5,
∴对于不同的正整数x,众数不会发生改变,众数依然是5吨.
故选B.
【点睛】
本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数的定义和计算方法是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、7
【解析】
根据多边形内角和公式得:(n-2) .得:
12、3(m-n)2
【解析】
原式==
故填:
13、a(b+3)(b﹣3).
【解析】
根据提公因式,平方差公式,可得答案.
【详解】
解:原式=a(b2﹣9)
=a(b+3)(b﹣3),
故答案为:a(b+3)(b﹣3).
【点睛】
本题考查了因式分解,一提,二套,三检查,分解要彻底.
14、(3,2)
【解析】
根据平移的性质即可得到结论.
【详解】
∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),
∵-1+3=2,
∴0+3=3
∴A′(3,2),
故答案为:(3,2)
【点睛】
本题考查了坐标与图形变化-平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.
15、(-2,-2)
【解析】
先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.
【详解】
“卒”的坐标为(﹣2,﹣2),
故答案是:(﹣2,﹣2).
【点睛】
考查了坐标确定位置,关键是正确确定原点位置.
16、a(a-6)2
【解析】
原式提取a,再利用完全平方公式分解即可.
【详解】
原式=a(a2-12a+36)=a(a-6)2,
故答案为a(a-6)2
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.
三、解答题(共8题,共72分)
17、 (1)见解析;(2) .
【解析】
(1)连接OD,根据切线的判定方法即可求出答案;
(2)由于OD∥AC,点O是AB的中点,从而可知OD为△ABC的中位线,在Rt△CDE中,∠C=60°,CE=CD=1,所以AE=AC−CE=4−1=3,在Rt△AEF中,所以EF=AE•sinA=3×sin60°=.
【详解】
(1)连接OD,
∵△ABC是等边三角形,
∴∠C=∠A=∠B=60°,
∵OD=OB,
∴△ODB是等边三角形,
∴∠ODB=60°
∴∠ODB=∠C,
∴OD∥AC,
∴DE⊥AC
∴OD⊥DE,
∴DE是⊙O的切线
(2)∵OD∥AC,点O是AB的中点,
∴OD为△ABC的中位线,
∴BD=CD=2
在Rt△CDE中,
∠C=60°,
∴∠CDE=30°,
∴CE=CD=1
∴AE=AC﹣CE=4﹣1=3
在Rt△AEF中,
∠A=60°,
∴EF=AE•sinA=3×sin60°=
【点睛】
本题考查圆的综合问题,涉及切线的判定,锐角三角函数,含30度角的直角三角形的性质,等边三角形的性质,本题属于中等题型.
18、
【解析】
由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣)和(1+)相乘得出结果.
【详解】
=
=
=.
故答案为:.
【点睛】
本题考查了算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.
19、(1)10,0.28,50(2)图形见解析(3)6.4(4)528
【解析】
分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;
(2)根据a的值画出条形图即可;
(3)根据平均数的定义计算即可;
(4)用样本估计总体的思想解决问题即可;
详解:(1)由题意c==50,
a=50×0.2=10,b==0.28,c=50;
故答案为10,0.28,50;
(2)将频数分布表直方图补充完整,如图所示:
(3)所有被调查学生课外阅读的平均本数为:
(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).
(4)该校七年级学生课外阅读7本及以上的人数为:
(0.28+0.16)×1200=528(人).
点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.
20、(1)相等或互补;(2)①BD+AB=BC;②AB﹣BD=BC;(3)BC= 或.
【解析】
(1)分为点C,D在直线MN同侧和点C,D在直线MN两侧,两种情况讨论即可解题,
(2)①作辅助线,证明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解题, ②在射线AM上截取AF=BD,连接CF,证明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解题,
(3)分为当点C,D在直线MN同侧,当点C,D在直线MN两侧,两种情况解题即可,见详解.
【详解】
解:(1)相等或互补;
理由:当点C,D在直线MN同侧时,如图1,
∵AC⊥CD,BD⊥MN,
∴∠ACD=∠BDC=90°,
在四边形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,
∵∠BAC+∠CAM=180°,
∴∠CAM=∠D;
当点C,D在直线MN两侧时,如图2,
∵∠ACD=∠ABD=90°,∠AEC=∠BED,
∴∠CAB=∠D,
∵∠CAB+∠CAM=180°,
∴∠CAM+∠D=180°,
即:∠D与∠MAC之间的数量是相等或互补;
(2)①猜想:BD+AB=BC
如图3,在射线AM上截取AF=BD,连接CF.
又∵∠D=∠FAC,CD=AC
∴△BCD≌△FCA,
∴BC=FC,∠BCD=∠FCA
∵AC⊥CD
∴∠ACD=90°
即∠ACB+∠BCD=90°
∴∠ACB+∠FCA=90°
即∠FCB=90°
∴BF=
∵AF+AB=BF=
∴BD+AB=;
②如图2,在射线AM上截取AF=BD,连接CF,
又∵∠D=∠FAC,CD=AC
∴△BCD≌△FCA,
∴BC=FC,∠BCD=∠FCA
∵AC⊥CD
∴∠ACD=90°
即∠ACB+∠BCD=90°
∴∠ACB+∠FCA=90°
即∠FCB=90°
∴BF=
∵AB﹣AF=BF=
∴AB﹣BD=;
(3)①当点C,D在直线MN同侧时,如图3﹣1,
由(2)①知,△ACF≌△DCB,
∴CF=BC,∠ACF=∠ACD=90°,
∴∠ABC=45°,
∵∠ABD=90°,
∴∠CBD=45°,
过点D作DG⊥BC于G,
在Rt△BDG中,∠CBD=45°,BD=,
∴DG=BG=1,
在Rt△CGD中,∠BCD=30°,
∴CG=DG=,
∴BC=CG+BG=+1,
②当点C,D在直线MN两侧时,如图2﹣1,
过点D作DG⊥CB交CB的延长线于G,
同①的方法得,BG=1,CG=,
∴BC=CG﹣BG=﹣1
即:BC= 或,
【点睛】
本题考查了三角形中的边长关系,等腰直角三角形的性质,中等难度,分类讨论与作辅助线是解题关键.
21、(1)y=150﹣x; (2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.
【解析】
(1)若购买x双(10<x<1),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;
(2)①设第一批购买x双,则第二批购买(100﹣x)双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则1≤100﹣x<75;当40<x<1时,则40<100﹣x<1.
②把两次的花费与第一次购买的双数用函数表示出来.
【详解】
解:(1)购买x双(10<x<1)时,y=140﹣(x﹣10)=150﹣x.
故y关于x的函数关系式是y=150﹣x;
(2)①设第一批购买x双,则第二批购买(100﹣x)双.
当25<x≤40时,则1≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,
解得x1=30,x2=40;
当40<x<1时,则40<100﹣x<1,
则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,
解得x=30或x=70,但40<x<1,所以无解;
答:第一批购买数量为30双或40双.
②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.
当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,
∴x=26时,w有最小值,最小值为9144元;
当40<x<1时,
w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,
∴x=41或59时,w有最小值,最小值为9838元,
综上所述:第一次买26双,第二次买74双最省钱,最少9144元.
【点睛】
考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
22、 (1)见解析;(2) 60°.
【解析】
(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明;
(2)连结BF,交AE于G.根据菱形的性质得出AB=2,AG=AE=,∠BAF=2∠BAE,AE⊥BF.然后解直角△ABG,求出∠BAG=30°,那么∠BAF=2∠BAE=60°.
【详解】
解:(1)在△AEB和△AEF中,
,
∴△AEB≌△AEF,
∴∠EAB=∠EAF,
∵AD∥BC,
∴∠EAF=∠AEB=∠EAB,
∴BE=AB=AF.
∵AF∥BE,
∴四边形ABEF是平行四边形,
∵AB=BE,
∴四边形ABEF是菱形;
(2)连结BF,交AE于G.
∵AB=AF=2,
∴GA=AE=×2=,
在Rt△AGB中,cos∠BAE==,
∴∠BAG=30°,
∴∠BAF=2∠BAG=60°,
【点睛】
本题考查了平行四边形的性质与菱形的判定与性质,解题的关键是熟练的掌握平行四边形的性质与菱形的判定与性质.
23、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).
【解析】
(1)由直线解析式可求得B点坐标,由A、B坐标,利用待定系数法可求得抛物线的表达式;
(2)过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,可设出C点坐标,利用C点坐标可表示出CD的长,从而可表示出△BOC的面积,由条件可得到关于C点坐标的方程,可求得C点坐标;
(3)设MB交y轴于点N,则可证得△ABO≌△NBO,可求得N点坐标,可求得直线BN的解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MG⊥y轴于点G,由B、C的坐标可求得OB和OC的长,由相似三角形的性质可求得的值,当点P在第一象限内时,过P作PH⊥x轴于点H,由条件可证得△MOG∽△POH,由的值,可求得PH和OH,可求得P点坐标;当P点在第三象限时,同理可求得P点坐标.
【详解】
(1)∵B(2,t)在直线y=x上,
∴t=2,
∴B(2,2),
把A、B两点坐标代入抛物线解析式可得:,解得:,
∴抛物线解析式为;
(2)如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,∵点C是抛物线上第四象限的点,
∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),
∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,
∴S△OBC=S△CDO+S△CDB=CD•OE+CD•BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,
∵△OBC的面积为2,
∴﹣2t2+4t=2,解得t1=t2=1,
∴C(1,﹣1);
(3)存在.设MB交y轴于点N,
如图2,
∵B(2,2),
∴∠AOB=∠NOB=45°,
在△AOB和△NOB中,
∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,
∴△AOB≌△NOB(ASA),
∴ON=OA=,
∴N(0,),
∴可设直线BN解析式为y=kx+,把B点坐标代入可得2=2k+,解得k=,
∴直线BN的解析式为,联立直线BN和抛物线解析式可得:,解得:或,
∴M(,),
∵C(1,﹣1),
∴∠COA=∠AOB=45°,且B(2,2),
∴OB=,OC=,
∵△POC∽△MOB,
∴,∠POC=∠BOM,
当点P在第一象限时
,如图3,过M作MG⊥y轴于点G,过P作PH⊥x轴于点H,如图3
∵∠COA=∠BOG=45°,
∴∠MOG=∠POH,且∠PHO=∠MGO,
∴△MOG∽△POH,
∴
∵M(,),
∴MG=,OG=,
∴PH=MG=,OH=OG=,
∴P(,);
当点P在第三象限时,如图4,过M作MG⊥y轴于点G,过P作PH⊥y轴于点H,
同理可求得PH=MG=,OH=OG=,
∴P(﹣,);
综上可知:存在满足条件的点P,其坐标为(,)或(﹣,).
【点睛】
本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、全等三角形的判定和性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中用C点坐标表示出△BOC的面积是解题的关键,在(3)中确定出点P的位置,构造相似三角形是解题的关键,注意分两种情况.
24、(1)50;(2)108°;(3).
【解析】
分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案.
本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.
(2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=.
点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
相关试卷
这是一份北京一零一中学2021-2022学年中考数学最后冲刺模拟试卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,下列函数是二次函数的是,下列计算正确的是等内容,欢迎下载使用。
这是一份北京市北京一零一中学2021-2022学年中考四模数学试题含解析,共21页。试卷主要包含了如图,,则的度数为,若a与﹣3互为倒数,则a=等内容,欢迎下载使用。
这是一份北京市第一零一中学2021-2022学年中考联考数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,方程的解是.等内容,欢迎下载使用。