北京市中学国人民大附属中学2022年毕业升学考试模拟卷数学卷含解析
展开
这是一份北京市中学国人民大附属中学2022年毕业升学考试模拟卷数学卷含解析,共27页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为( )
A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+3
2.已知⊙O1与⊙O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是( )
A.相交 B.内切 C.外离 D.内含
3.二次函数y=-x2-4x+5的最大值是( )
A.-7 B.5 C.0 D.9
4.如图,已知直线,点E,F分别在、上,,如果∠B=40°,那么( )
A.20° B.40° C.60° D.80°
5.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是( )
A.AE=6cm B.
C.当0<t≤10时, D.当t=12s时,△PBQ是等腰三角形
6.如图是某零件的示意图,它的俯视图是( )
A. B. C. D.
7.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时, 那么下列结论成立的是( ).
A.线段EF的长逐渐增大 B.线段EF的长逐渐减少
C.线段EF的长不变 D.线段EF的长不能确定
8.下列运算正确的是( )
A.(a﹣3)2=a2﹣9 B.()﹣1=2 C.x+y=xy D.x6÷x2=x3
9.根据《九章算术》的记载中国人最早使用负数,下列负数中最大的是( )
A.-1 B.- C. D.–π
10.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是( )
A. B. C. D.
11.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是( )
A.四条边相等的四边形是菱形 B.一组邻边相等的平行四边形是菱形
C.对角线互相垂直的平行四边形是菱形 D.对角线互相垂直平分的四边形是菱形
12.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为( )
A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,四边形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,设Q、R分别是AB、AD上的动点,则△CQR 的周长的最小值为_________ .
14.如图,已知抛物线与坐标轴分别交于A,B,C三点,在抛物线上找到一点D,使得∠DCB=∠ACO,则D点坐标为____________________.
15.如图,等边△ABC的边长为1cm,D、E分别是AB、AC边上的点,将△ADE沿直线DE折叠,点A落在点处,且点在△ABC的外部,则阴影部分图形的周长为_____cm.
16.二次函数的图象与x轴有____个交点 .
17.抛物线y=x2﹣2x+3的对称轴是直线_____.
18.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为 .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知∠COD=∠OAB=90°,OC=,反比例函数y=的图象经过点B.求k的值.把△OCD沿射线OB移动,当点D落在y=图象上时,求点D经过的路径长.
20.(6分)如图,已知点、在直线上,且,于点,且,以为直径在的左侧作半圆,于,且.
若半圆上有一点,则的最大值为________;向右沿直线平移得到;
①如图,若截半圆的的长为,求的度数;
②当半圆与的边相切时,求平移距离.
21.(6分)如图,在矩形ABCD中,对角线AC,BD相交于点O.
(1)画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.
(2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.
22.(8分)如图,直角坐标系中,直线与反比例函数的图象交于A,B两点,已知A点的纵坐标是2.
(1)求反比例函数的解析式.
(2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.
23.(8分)在平面直角坐标系中,已知抛物线经过A(-3,0),B(0,-3),C(1,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S
关于m的函数关系式,并求出S的最大值;
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
24.(10分)如图,在⊿中,,于, .
⑴.求的长;
⑵.求 的长.
25.(10分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。求文具袋和圆规的单价。学校准备购买文具袋20个,圆规若干,文具店给出两种优惠方案:
方案一:购买一个文具袋还送1个圆规。
方案二:购买圆规10个以上时,超出10个的部分按原价的八折优惠,文具袋不打折.
①设购买面规m个,则选择方案一的总费用为______,选择方案二的总费用为______.
②若学校购买圆规100个,则选择哪种方案更合算?请说明理由.
26.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).
(Ⅰ)求二次函数的解析式及点A,B的坐标;
(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;
(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.
27.(12分)如图所示,点C为线段OB的中点,D为线段OA上一点.连结AC、BD交于点P.
(问题引入)(1)如图1,若点P为AC的中点,求的值.
温馨提示:过点C作CE∥AO交BD于点E.
(探索研究)(2)如图2,点D为OA上的任意一点(不与点A、O重合),求证:.
(问题解决)(3)如图2,若AO=BO,AO⊥BO,,求tan∠BPC的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
直接利用配方法将原式变形,进而利用平移规律得出答案.
【详解】
y=x2﹣6x+21
=(x2﹣12x)+21
=[(x﹣6)2﹣16]+21
=(x﹣6)2+1,
故y=(x﹣6)2+1,向左平移2个单位后,
得到新抛物线的解析式为:y=(x﹣4)2+1.
故选D.
【点睛】
本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键.
2、A
【解析】
试题分析:∵⊙O1和⊙O2的半径分别为5cm和3cm,圆心距O1O2=4cm,5﹣3<4<5+3,
∴根据圆心距与半径之间的数量关系可知⊙O1与⊙O2相交.
故选A.
考点:圆与圆的位置关系.
3、D
【解析】
直接利用配方法得出二次函数的顶点式进而得出答案.
【详解】
y=﹣x2﹣4x+5=﹣(x+2)2+9,
即二次函数y=﹣x2﹣4x+5的最大值是9,
故选D.
【点睛】
此题主要考查了二次函数的最值,正确配方是解题关键.
4、C
【解析】
根据平行线的性质,可得的度数,再根据以及平行线的性质,即可得出的度数.
【详解】
∵,,
∴,
∵,
∴,
∵,
∴,
故选C.
【点睛】
本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.
5、D
【解析】
(1)结论A正确,理由如下:
解析函数图象可知,BC=10cm,ED=4cm,
故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.
(2)结论B正确,理由如下:
如图,连接EC,过点E作EF⊥BC于点F,
由函数图象可知,BC=BE=10cm,,
∴EF=1.∴.
(3)结论C正确,理由如下:
如图,过点P作PG⊥BQ于点G,
∵BQ=BP=t,∴.
(4)结论D错误,理由如下:
当t=12s时,点Q与点C重合,点P运动到ED的中点,
设为N,如图,连接NB,NC.
此时AN=1,ND=2,由勾股定理求得:NB=,NC=.
∵BC=10,
∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.
故选D.
6、C
【解析】
物体的俯视图,即是从上面看物体得到的结果;根据三视图的定义,从上面看物体可以看到是一个正六边形,里面是一个没有圆心的圆,由此可以确定答案.
【详解】
从上面看是一个正六边形,里面是一个没有圆心的圆.
故答案选C.
【点睛】
本题考查了几何体的三视图,解题的关键是熟练的掌握几何体三视图的定义.
7、C
【解析】
因为R不动,所以AR不变.根据三角形中位线定理可得EF= AR,因此线段EF的长不变.
【详解】
如图,连接AR,
∵E、F分别是AP、RP的中点,
∴EF为△APR的中位线,
∴EF= AR,为定值.
∴线段EF的长不改变.
故选:C.
【点睛】
本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
8、B
【解析】
分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.
详解:A. (a﹣3)2=a2﹣6a+9,故该选项错误;
B. ()﹣1=2,故该选项正确;
C.x与y不是同类项,不能合并,故该选项错误;
D. x6÷x2=x6-2=x4,故该选项错误.
故选B.
点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.
9、B
【解析】
根据两个负数,绝对值大的反而小比较.
【详解】
解:∵− >−1>− >−π,
∴负数中最大的是−.
故选:B.
【点睛】
本题考查了实数大小的比较,解题的关键是知道正数大于0,0大于负数,两个负数,绝对值大的反而小.
10、A
【解析】试题分析:几何体的主视图有2列,每列小正方形数目分别为2,1.
故选A.
考点:三视图
视频
11、A
【解析】
根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.
【详解】
∵ 将 △ABC 延底边 BC 翻折得到 △DBC ,
∴AB=BD , AC=CD ,
∵AB=AC ,
∴AB=BD=CD=AC ,
∴ 四边形 ABDC 是菱形;
故选A.
【点睛】
本题考查了菱形的判定方法:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形.
12、A
【解析】
先将抛物线解析式化为顶点式,左加右减的原则即可.
【详解】
,
当向左平移2个单位长度,再向上平移3个单位长度,得
.
故选A.
【点睛】
本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
作C关于AB的对称点G,关于AD的对称点F,可得三角形CQR的周长=CQ+QR+CR=GQ+QR+RF≥GF.根据圆周角定理可得∠CDB=∠CAB=45°,∠CBD=∠CAD=30°,由于GF=2BD,在三角形CBD中,作CH⊥BD于H,可求BD的长,从而求出△CQR的周长的最小值.
【详解】
解:作C关于AB的对称点G,关于AD的对称点F,则三角形CQR的周长=CQ+QR+CR=GQ+QR+RF=GF,
在Rt△ADC中,∵sin∠DAC=,
∴∠DAC=30°,
∵BA=BC,∠ABC=90°,
∴∠BAC=∠BCA=45°,
∵∠ADC=∠ABC=90°,
∴A,B,C,D四点共圆,
∴∠CDB=∠CAB=45°,∠CBD=∠CAD=30°
在三角形CBD中,作CH⊥BD于H,
BD=DH+BH=4×cos45°+×cos30°=,
∵CD=DF,CB=BG,
∴GF=2BD=,
△CQR的周长的最小值为.
【点睛】
本题考查了轴对称问题,关键是根据轴对称的性质和两点之间线段最短解答.
14、(,),(-4,-5)
【解析】
求出点A、B、C的坐标,当D在x轴下方时,设直线CD与x轴交于点E,由于∠DCB=∠ACO.所以tan∠DCB=tan∠ACO,从而可求出E的坐标,再求出CE的直线解析式,联立抛物线即可求出D的坐标,再由对称性即可求出D在x轴上方时的坐标.
【详解】
令y=0代入y=-x2-2x+3,
∴x=-3或x=1,
∴OA=1,OB=3,
令x=0代入y=-x2-2x+3,
∴y=3,
∴OC=3,
当点D在x轴下方时,
∴设直线CD与x轴交于点E,过点E作EG⊥CB于点G,
∵OB=OC,
∴∠CBO=45°,
∴BG=EG,OB=OC=3,
∴由勾股定理可知:BC=3,
设EG=x,
∴CG=3-x,
∵∠DCB=∠ACO.
∴tan∠DCB=tan∠ACO=,
∴,
∴x=,
∴BE=x=,
∴OE=OB-BE=,
∴E(-,0),
设CE的解析式为y=mx+n,交抛物线于点D2,
把C(0,3)和E(-,0)代入y=mx+n,
∴,解得:.
∴直线CE的解析式为:y=2x+3,
联立
解得:x=-4或x=0,
∴D2的坐标为(-4,-5)
设点E关于BC的对称点为F,
连接FB,
∴∠FBC=45°,
∴FB⊥OB,
∴FB=BE=,
∴F(-3,)
设CF的解析式为y=ax+b,
把C(0,3)和(-3,)代入y=ax+b
解得:,
∴直线CF的解析式为:y=x+3,
联立
解得:x=0或x=-
∴D1的坐标为(-,)
故答案为(-,)或(-4,-5)
【点睛】
本题考查二次函数的综合问题,解题的关键是根据对称性求出相关点的坐标,利用直线解析式以及抛物线的解析式即可求出点D的坐标.
15、3
【解析】
由折叠前后图形全等,可将阴影部分图形的周长转化为三角形周长.
【详解】
∵△A'DE与△ADE关于直线DE对称,
∴AD=A'D,AE=A'E,
C阴影=BC+A'D+A'E+BD+EC= BC+AD+AE+BD+EC =BC+AB+AC=3cm.
故答案为3.
【点睛】
由图形轴对称可以得到对应的边相等、角相等.
16、2
【解析】
【分析】根据一元二次方程x2+mx+m-2=0的根的判别式的符号进行判定二次函数y=x2+mx+m-2的图象与x轴交点的个数.
【详解】二次函数y=x2+mx+m-2的图象与x轴交点的纵坐标是零,
即当y=0时,x2+mx+m-2=0,
∵△=m2-4(m-2)=(m-2)2+4>0,
∴一元二次方程x2+mx+m-2=0有两个不相等是实数根,
即二次函数y=x2+mx+m-2的图象与x轴有2个交点,
故答案为:2.
【点睛】本题考查了抛物线与x轴的交点.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.
△=b2-4ac决定抛物线与x轴的交点个数.
△=b2-4ac>0时,抛物线与x轴有2个交点;
△=b2-4ac=0时,抛物线与x轴有1个交点;
△=b2-4ac<0时,抛物线与x轴没有交点.
17、x=1
【解析】
把解析式化为顶点式可求得答案.
【详解】
解:∵y=x2-2x+3=(x-1)2+2,
∴对称轴是直线x=1,
故答案为x=1.
【点睛】
本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).
18、7
【解析】
试题分析:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC.
∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.
∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.
又∵∠B=∠C=60°,∴△ABD∽△DCE.
∴,即.
∴.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)k=2;(2)点D经过的路径长为.
【解析】
(1)根据题意求得点B的坐标,再代入求得k值即可;
(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M(如图),根据已知条件可求得点D的坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的长,即可得点D经过的路径长.
【详解】
(1)∵△AOB和△COD为全等三的等腰直角三角形,OC=,
∴AB=OA=OC=OD=,
∴点B坐标为(,),
代入得k=2;
(2)设平移后与反比例函数图象的交点为D′,
由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M,如图,
∵OC=OD=,∠AOB=∠COM=45°,
∴OM=MC=MD=1,
∴D坐标为(﹣1,1),
设D′横坐标为t,则OE=MF=t,
∴D′F=DF=t+1,
∴D′E=D′F+EF=t+2,
∴D′(t,t+2),
∵D′在反比例函数图象上,
∴t(t+2)=2,解得t=或t=﹣﹣1(舍去),
∴D′(﹣1, +1),
∴DD′=,
即点D经过的路径长为.
【点睛】
本题是反比例函数与几何的综合题,求得点D′的坐标是解决第(2)问的关键.
20、(1);(2)①;②
【解析】
(1)由图可知当点F与点D重合时,AF最大,根据勾股定理即可求出此时AF的长;
(2)①连接EG、EH.根据的长为π可求得∠GEH=60°,可得△GEH是等边三角形,根据等边三角形的三个角都等于60°得出∠HGE=60°,可得EG//A'O,求得∠GEO=90°,得出△GEO是等腰直角三角形,求得∠EGO=45°,根据平角的定义即可求出∠A'GO的度数;
②分C'A'与半圆相切和B'A'与半圆相切两种情况进行讨论,利用切线的性质、勾股定理、切斜长定理等知识进行解答即可得出答案.
【详解】
解:
(1)当点F与点D重合时,AF最大,
AF最大=AD==,
故答案为:;
(2)①连接、.
∵,
∴.
∵,
∴是等边三角形,
∴.
∵,
∴,
∴,
∵,
∴,
∵,
∴,
∴.
②当切半圆于时,连接,则.
∵,
∴切半圆于点,
∴.
∵,
∴,
∴平移距离为.
当切半圆于时,连接并延长于点,
∵,,,
∴,
∵,
∴,
∵,
∴,
∵,
∴.
∵,
∴.
【点睛】
本题主要考查了弧长公式、勾股定理、切线的性质,作出过切点的半径构造出直角三角形是解决此题的关键.
21、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.
【解析】
(1)根据图形平移的性质画出平移后的△DEC即可;
(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.
【详解】
(1)如图所示;
(2)四边形OCED是菱形.
理由:∵△DEC由△AOB平移而成,
∴AC∥DE,BD∥CE,OA=DE,OB=CE,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,
∴OA=OB,
∴DE=CE,
∴四边形OCED是菱形.
【点睛】
本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.
22、(1);(2)P(0,6)
【解析】
试题分析:(1)先求得点A的坐标,再利用待定系数法求得反比例函数的解析式即可;(2)连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC
相关试卷
这是一份海南海口市琼山区国兴中学2021-2022学年毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了估计﹣2的值应该在等内容,欢迎下载使用。
这是一份北京市第八中学2021-2022学年毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了小手盖住的点的坐标可能为等内容,欢迎下载使用。
这是一份2022年江苏省南京师范大附属中学毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了下列各组数中,互为相反数的是等内容,欢迎下载使用。